These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1564454)

  • 1. Reorganization of sensory regulation of locust flight after partial deafferentation.
    Büschges A; Ramirez JM; Pearson KG
    J Neurobiol; 1992 Feb; 23(1):31-43. PubMed ID: 1564454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation.
    Büschges A; Ramirez JM; Driesang R; Pearson KG
    J Neurobiol; 1992 Feb; 23(1):44-60. PubMed ID: 1373440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system.
    Wolf H; Büschges A
    J Neurophysiol; 1997 Sep; 78(3):1276-84. PubMed ID: 9310419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interneurons in the flight system of the locust: distribution, connections, and resetting properties.
    Robertson RM; Pearson KG
    J Comp Neurol; 1983 Mar; 215(1):33-50. PubMed ID: 6853764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proprioceptive input patterns elevator activity in the locust flight system.
    Wolf H; Pearson KG
    J Neurophysiol; 1988 Jun; 59(6):1831-53. PubMed ID: 3404207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projections of the wing stretch receptors to central flight neurons in the locust.
    Reye DN; Pearson KG
    J Neurosci; 1987 Aug; 7(8):2476-87. PubMed ID: 3612248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of motor patterns for walking and flight in motoneurons supplying bifunctional muscles in the locust.
    Ramirez JM; Pearson KG
    J Neurobiol; 1988 Apr; 19(3):257-82. PubMed ID: 3373206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of bursting properties in interneurons during locust flight.
    Ramirez JM; Pearson KG
    J Neurophysiol; 1993 Nov; 70(5):2148-60. PubMed ID: 8294976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Octopaminergic modulation of interneurons in the flight system of the locust.
    Ramirez JM; Pearson KG
    J Neurophysiol; 1991 Nov; 66(5):1522-37. PubMed ID: 1765792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical deafferentation of the locust flight system by phentolamine.
    Ramirez JM; Pearson KG
    J Comp Physiol A; 1990 Sep; 167(4):485-94. PubMed ID: 2175355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-dependent presynaptic modulation of mechanosensory signals in the locust flight system.
    Büschges A; Wolf H
    J Neurophysiol; 1999 Feb; 81(2):959-62. PubMed ID: 10036295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central projections of the wing afferents in the hawkmoth, Agrius convolvuli.
    Ando N; Wang H; Shirai K; Kiguchi K; Kanzaki R
    J Insect Physiol; 2011 Nov; 57(11):1518-36. PubMed ID: 21867710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of the flight system following ablation of the tegulae in immature adult locusts.
    Gee C; Robertson R
    J Exp Biol; 1996; 199(Pt 6):1395-403. PubMed ID: 9319291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust.
    Reichert H; Rowell CH
    J Neurophysiol; 1985 May; 53(5):1201-18. PubMed ID: 2987432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Output connections of a wind sensitive interneurone with motor neurones innervating flight steering muscles in the locust.
    Burrows M; Pflüger HJ
    J Comp Physiol A; 1992 Nov; 171(4):437-46. PubMed ID: 1469664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monosynaptic connexions between wing stretch receptors and flight motoneurones of the locust.
    Burrows M
    J Exp Biol; 1975 Feb; 62(1):189-219. PubMed ID: 168304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of octopamine, dopamine, and serotonin on production of flight motor output by thoracic ganglia of Manduca sexta.
    Claassen DE; Kammer AE
    J Neurobiol; 1986 Jan; 17(1):1-14. PubMed ID: 3088211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects.
    McMillan GA; Loessin V; Gray JR
    J Exp Biol; 2013 Sep; 216(Pt 17):3369-80. PubMed ID: 23737560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.