These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 15644893)
1. Microcosm tests of the effects of temperature and microbial species number on the decomposition of Carex aquatilis and Sphagnum fuscum litter from southern boreal peatlands. Thormann MN; Bayley SE; Currah RS Can J Microbiol; 2004 Oct; 50(10):793-802. PubMed ID: 15644893 [TBL] [Abstract][Full Text] [Related]
2. Interactions among fungal community structure, litter decomposition and depth of water table in a cutover peatland. Trinder CJ; Johnson D; Artz RR FEMS Microbiol Ecol; 2008 Jun; 64(3):433-48. PubMed ID: 18430005 [TBL] [Abstract][Full Text] [Related]
3. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter. Gulis V; Suberkropp K Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584 [TBL] [Abstract][Full Text] [Related]
4. Plant functional group controls litter decomposition rate and its temperature sensitivity: An incubation experiment on litters from a boreal peatland in northeast China. Mao R; Zhang X; Song C; Wang X; Finnegan PM Sci Total Environ; 2018 Jun; 626():678-683. PubMed ID: 29898554 [TBL] [Abstract][Full Text] [Related]
6. Fine-root biomass production and its contribution to organic matter accumulation in sedge fens under changing climate. Bhuiyan R; Mäkiranta P; Straková P; Fritze H; Minkkinen K; Penttilä T; Rajala T; Tuittila ES; Laiho R Sci Total Environ; 2023 Feb; 858(Pt 2):159683. PubMed ID: 36336060 [TBL] [Abstract][Full Text] [Related]
7. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Sayer EJ Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580 [TBL] [Abstract][Full Text] [Related]
8. High nitrogen availability reduces polyphenol content in Sphagnum peat. Bragazza L; Freeman C Sci Total Environ; 2007 May; 377(2-3):439-43. PubMed ID: 17382372 [TBL] [Abstract][Full Text] [Related]
9. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Boyero L; Pearson RG; Gessner MO; Barmuta LA; Ferreira V; Graça MA; Dudgeon D; Boulton AJ; Callisto M; Chauvet E; Helson JE; Bruder A; Albariño RJ; Yule CM; Arunachalam M; Davies JN; Figueroa R; Flecker AS; Ramírez A; Death RG; Iwata T; Mathooko JM; Mathuriau C; Gonçalves JF; Moretti MS; Jinggut T; Lamothe S; M'Erimba C; Ratnarajah L; Schindler MH; Castela J; Buria LM; Cornejo A; Villanueva VD; West DC Ecol Lett; 2011 Mar; 14(3):289-94. PubMed ID: 21299824 [TBL] [Abstract][Full Text] [Related]
10. Impacts of warming on aquatic decomposers along a gradient of cadmium stress. Batista D; Pascoal C; Cássio F Environ Pollut; 2012 Oct; 169():35-41. PubMed ID: 22683478 [TBL] [Abstract][Full Text] [Related]
11. Responses of aerobic microbial communities and soil respiration to water-level drawdown in a northern boreal fen. Jaatinen K; Laiho R; Vuorenmaa A; del Castillo U; Minkkinen K; Pennanen T; Penttilä T; Fritze H Environ Microbiol; 2008 Feb; 10(2):339-53. PubMed ID: 17903215 [TBL] [Abstract][Full Text] [Related]
12. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Heijmans MM; van der Knaap YA; Holmgren M; Limpens J Glob Chang Biol; 2013 Jul; 19(7):2240-50. PubMed ID: 23526779 [TBL] [Abstract][Full Text] [Related]
13. Methane production and oxidation potentials along a fen-bog gradient from southern boreal to subarctic peatlands in Finland. Zhang H; Tuittila ES; Korrensalo A; Laine AM; Uljas S; Welti N; Kerttula J; Maljanen M; Elliott D; Vesala T; Lohila A Glob Chang Biol; 2021 Sep; 27(18):4449-4464. PubMed ID: 34091981 [TBL] [Abstract][Full Text] [Related]
14. Assessing the dynamic of microbial communities during leaf decomposition in a low-order stream by microscopic and molecular techniques. Duarte S; Pascoal C; Alves A; Correia A; Cássio F Microbiol Res; 2010 Jul; 165(5):351-62. PubMed ID: 19720514 [TBL] [Abstract][Full Text] [Related]
15. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Biasi C; Rusalimova O; Meyer H; Kaiser C; Wanek W; Barsukov P; Junger H; Richter A Rapid Commun Mass Spectrom; 2005; 19(11):1401-8. PubMed ID: 15880633 [TBL] [Abstract][Full Text] [Related]
16. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Mille-Lindblom C; Tranvik LJ Microb Ecol; 2003 Feb; 45(2):173-82. PubMed ID: 12545315 [TBL] [Abstract][Full Text] [Related]
17. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Caldwell MM; Bornman JF; Ballaré CL; Flint SD; Kulandaivelu G Photochem Photobiol Sci; 2007 Mar; 6(3):252-66. PubMed ID: 17344961 [TBL] [Abstract][Full Text] [Related]
18. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Raghoebarsing AA; Smolders AJ; Schmid MC; Rijpstra WI; Wolters-Arts M; Derksen J; Jetten MS; Schouten S; Sinninghe Damsté JS; Lamers LP; Roelofs JG; Op den Camp HJ; Strous M Nature; 2005 Aug; 436(7054):1153-6. PubMed ID: 16121180 [TBL] [Abstract][Full Text] [Related]
19. Does initial litter chemistry explain litter mixture effects on decomposition? Hoorens B; Aerts R; Stroetenga M Oecologia; 2003 Dec; 137(4):578-86. PubMed ID: 14505026 [TBL] [Abstract][Full Text] [Related]
20. In vitro decomposition of Sphagnum by some microfungi resembles white rot of wood. Rice AV; Tsuneda A; Currah RS FEMS Microbiol Ecol; 2006 Jun; 56(3):372-82. PubMed ID: 16689870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]