BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15645485)

  • 1. A supported liquid membrane encapsulating a surfactant-lipase complex for the selective separation of organic acids.
    Miyako E; Maruyama T; Kamiya N; Goto M
    Chemistry; 2005 Feb; 11(4):1163-70. PubMed ID: 15645485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly enantioselective separation using a supported liquid membrane encapsulating surfactant-enzyme complex.
    Miyako E; Maruyama T; Kamiya N; Goto M
    J Am Chem Soc; 2004 Jul; 126(28):8622-3. PubMed ID: 15250693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of organic acids through a supported liquid membrane driven by lipase-catalyzed reactions.
    Miyako E; Maruyama T; Kamiya N; Goto M
    J Biosci Bioeng; 2003; 96(4):370-4. PubMed ID: 16233539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partially purified Carica papaya lipase: a versatile biocatalyst for the hydrolytic resolution of (R,S)-2-arylpropionic thioesters in water-saturated organic solvents.
    Ng IS; Tsai SW
    Biotechnol Bioeng; 2005 Jul; 91(1):106-13. PubMed ID: 15918166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical resolution of various amino acids using a supported liquid membrane encapsulating a surfactant-protease complex.
    Miyako E; Maruyama T; Kubota F; Kamiya N; Goto M
    Langmuir; 2005 May; 21(10):4674-9. PubMed ID: 16032888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.
    Goswami D; Sen R; Basu JK; De S
    Bioresour Technol; 2010 Jan; 101(1):6-13. PubMed ID: 19717301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superparamagnetic nanoparticle-supported enzymatic resolution of racemic carboxylates.
    Gardimalla HM; Mandal D; Stevens PD; Yen M; Gao Y
    Chem Commun (Camb); 2005 Sep; (35):4432-4. PubMed ID: 16136241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase.
    James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P
    Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable colloidal dispersions of a lipase-perfluoropolyether complex in liquid and supercritical carbon dioxide.
    Adkins SS; Hobbs HR; Benaissi K; Johnston KP; Poliakoff M; Thomas NR
    J Phys Chem B; 2008 Apr; 112(15):4760-9. PubMed ID: 18363394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase isoform 1 in organic solvents.
    Secundo F; Carrea G; Tarabiono C; Brocca S; Lotti M
    Biotechnol Bioeng; 2004 Apr; 86(2):236-40. PubMed ID: 15052644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution of racemic carboxylic acids via the lipase-catalyzed irreversible transesterification of vinyl esters.
    Miyazawa T; Kurita S; Shimaoka M; Ueji S; Yamada T
    Chirality; 1999; 11(7):554-60. PubMed ID: 10423282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of ionic liquids in a lipase-facilitated supported liquid membrane.
    Miyako E; Maruyama T; Kamiya N; Goto M
    Biotechnol Lett; 2003 May; 25(10):805-8. PubMed ID: 12882011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse micelles-mediated transport of lipase in liquid emulsion membrane for downstream processing.
    Bhavya SG; Priyanka BS; Rastogi NK
    Biotechnol Prog; 2012; 28(6):1542-50. PubMed ID: 23011754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient hydrolysis of tuna oil by a surfactant-coated lipase in a two-phase system.
    Ko WC; Wang HJ; Hwang JS; Hsieh CW
    J Agric Food Chem; 2006 Mar; 54(5):1849-53. PubMed ID: 16506843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct enantioselective HPLC monitoring of lipase-catalyzed kinetic resolution of tiaprofenic acid in nonstandard HPLC organic solvents.
    Ghanem A; Aboul-Enein MN; El-Azzouny A; El-Behairy MF; Al-Humaidi E; Alaidan AA; Amin K; Al-Ahdal MN
    Chirality; 2008 Aug; 20(8):871-7. PubMed ID: 18246593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of stable emulsion to improve stability, activity, and enantioselectivity of lipase immobilized in a membrane reactor.
    Giorno L; Li N; Drioli E
    Biotechnol Bioeng; 2003 Dec; 84(6):677-85. PubMed ID: 14595780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.
    Bhowal S; Priyanka BS; Rastogi NK
    Biotechnol Prog; 2014; 30(5):1084-92. PubMed ID: 24930827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reusability of surfactant-coated Candida rugosa lipase immobilized in gelatin microemulsion-based organogels for ethyl isovalerate synthesis.
    Dandavate V; Madamwar D
    J Microbiol Biotechnol; 2008 Apr; 18(4):735-41. PubMed ID: 18467869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective esterification of (R,S)-2-methylalkanoic acid with Carica papaya lipase in organic solvents.
    Chang CS; Ho SC
    Biotechnol Lett; 2011 Nov; 33(11):2247-53. PubMed ID: 21744274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of linoleoyl disaccharides through lipase-catalyzed condensation and their surface activities.
    Chen J; Kimura Y; Adachi S
    J Biosci Bioeng; 2005 Sep; 100(3):274-9. PubMed ID: 16243276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.