BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 15645810)

  • 1. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter.
    Adler DC; Ko TH; Fujimoto JG
    Opt Lett; 2004 Dec; 29(24):2878-80. PubMed ID: 15645810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.
    Chitchian S; Fiddy MA; Fried NM
    J Biomed Opt; 2009; 14(1):014031. PubMed ID: 19256719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelet denoising during optical coherence tomography of the prostate nerves using the complex wavelet transform.
    Chitchian S; Fiddy M; Fried NM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3016-9. PubMed ID: 19163341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speckle reduction in optical coherence tomography images using digital filtering.
    Ozcan A; Bilenca A; Desjardins AE; Bouma BE; Tearney GJ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):1901-10. PubMed ID: 17728812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator.
    Zhang J; Nelson JS; Chen Z
    Opt Lett; 2005 Jan; 30(2):147-9. PubMed ID: 15675695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards multi-directional OCT for speckle noise reduction.
    Ramrath L; Moreno G; Mueller H; Bonin T; Huettmann G; Schweikard A
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):815-23. PubMed ID: 18979821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images.
    Zhang X; Li L; Zhu F; Hou W; Chen X
    J Biomed Opt; 2014 Jun; 19(6):066005. PubMed ID: 24919448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm.
    Srinivasan VJ; Huber R; Gorczynska I; Fujimoto JG; Jiang JY; Reisen P; Cable AE
    Opt Lett; 2007 Feb; 32(4):361-3. PubMed ID: 17356653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional speckle suppression in Optical Coherence Tomography based on the curvelet transform.
    Jian Z; Yu L; Rao B; Tromberg BJ; Chen Z
    Opt Express; 2010 Jan; 18(2):1024-32. PubMed ID: 20173923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution frequency-domain second-harmonic optical coherence tomography.
    Su J; Tomov IV; Jiang Y; Chen Z
    Appl Opt; 2007 Apr; 46(10):1770-5. PubMed ID: 17356620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal-to-noise ratio study of full-field fourier-domain optical coherence tomography.
    Blazkiewicz P; Gourlay M; Tucker JR; Rakic AD; Zvyagin AV
    Appl Opt; 2005 Dec; 44(36):7722-9. PubMed ID: 16381518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined image-processing algorithms for improved optical coherence tomography of prostate nerves.
    Chitchian S; Weldon TP; Fiddy MA; Fried NM
    J Biomed Opt; 2010; 15(4):046014. PubMed ID: 20799816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit.
    Rasakanthan J; Sugden K; Tomlins PH
    J Biomed Opt; 2011 Feb; 16(2):020505. PubMed ID: 21361661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delineating fluid-filled region boundaries in optical coherence tomography images of the retina.
    Fernández DC
    IEEE Trans Med Imaging; 2005 Aug; 24(8):929-45. PubMed ID: 16092326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography.
    Wang Y; Tomov I; Nelson JS; Chen Z; Lim H; Wise F
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1492-9. PubMed ID: 16134843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speckle Removal Using Diffusion Potential for Optical Coherence Tomography Images.
    Paul A; Mukherjee DP; Acton ST
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):264-272. PubMed ID: 29994174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autocorrelation noise removal for optical coherence tomography by sparse filter design.
    Seck HL; Zhang Y; Soh YC
    J Biomed Opt; 2012 Jul; 17(7):076029. PubMed ID: 22894512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage.
    Xu J; Ou H; Lam EY; Chui PC; Wong KK
    Opt Lett; 2013 Aug; 38(15):2900-3. PubMed ID: 23903174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated segmentation of the macula by optical coherence tomography.
    Fabritius T; Makita S; Miura M; Myllylä R; Yasuno Y
    Opt Express; 2009 Aug; 17(18):15659-69. PubMed ID: 19724565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speckle statistics in optical coherence tomography.
    Karamata B; Hassler K; Laubscher M; Lasser T
    J Opt Soc Am A Opt Image Sci Vis; 2005 Apr; 22(4):593-6. PubMed ID: 15839265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.