These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 15646349)

  • 1. [Structure characterization of calcium polyphosphate bioceramics during sintering process].
    Gao X; Guo L; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):991-4. PubMed ID: 15646349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of processing parameters on the degradation of calcium polyphosphate bioceramic for bone tissue scaffolds].
    Qin Y; Yu X; Chen Y; Ding Y; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):794-7. PubMed ID: 17899747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Structure and performance of calcium polyphosphate for bone tissue engineering].
    Qiu K; Chen Y; Zhang Q; Su H; Yu X; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1271-4. PubMed ID: 17228724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase transformations during processing and in vitro degradation of porous calcium polyphosphates.
    Hu Y; Pilliar R; Grynpas M; Kandel R; Werner-Zwanziger U; Filiaggi M
    J Mater Sci Mater Med; 2016 Jul; 27(7):117. PubMed ID: 27255688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous calcium polyphosphate bone substitutes: additive manufacturing versus conventional gravity sinter processing-effect on structure and mechanical properties.
    Hu Y; Shanjani Y; Toyserkani E; Grynpas M; Wang R; Pilliar R
    J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):274-83. PubMed ID: 23997039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ.
    Li J; Chen Y; Yin Y; Yao F; Yao K
    Biomaterials; 2007 Feb; 28(5):781-90. PubMed ID: 17056107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of fluid ingress into calcium polyphosphate bioceramics using nuclear magnetic resonance microscopy.
    Bray JM; Petrone C; Filiaggi M; Beyea SD
    Solid State Nucl Magn Reson; 2007 Dec; 32(4):118-28. PubMed ID: 17996428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and physical properties of tricalcium phosphate laminates for bone-tissue engineering.
    Tanimoto Y; Nishiyama N
    J Biomed Mater Res A; 2008 May; 85(2):427-33. PubMed ID: 17701974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic characterization of porous nanohydroxyapatite synthesized by a novel amino acid soft solution freezing method.
    Gopi D; Indira J; Prakash VC; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):282-4. PubMed ID: 19525142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and bioactivity of tape-cast and sintered TCP sheets.
    Tanimoto Y; Hayakawa T; Sakae T; Nemoto K
    J Biomed Mater Res A; 2006 Mar; 76(3):571-9. PubMed ID: 16278874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of single-phase silicon-substituted alpha-tricalcium phosphate.
    Reid JW; Tuck L; Sayer M; Fargo K; Hendry JA
    Biomaterials; 2006 May; 27(15):2916-25. PubMed ID: 16448694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants.
    Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L
    J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: a study of processing parameters and in vitro degradation characteristics.
    Porter NL; Pilliar RM; Grynpas MD
    J Biomed Mater Res; 2001 Sep; 56(4):504-15. PubMed ID: 11400128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sintering behaviour of hydroxyapatite bioceramics.
    Ramesh S; Tan CY; Aw KL; Yeo WH; Hamdi M; Sopyan I; Teng WD
    Med J Malaysia; 2008 Jul; 63 Suppl A():89-90. PubMed ID: 19024998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteochondral defect repair using a novel tissue engineering approach: sheep model study.
    Pilliar RM; Kandel RA; Grynpas MD; Zalzal P; Hurtig M
    Technol Health Care; 2007; 15(1):47-56. PubMed ID: 17264412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies.
    Shanjani Y; Hu Y; Toyserkani E; Grynpas M; Kandel RA; Pilliar RM
    J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):972-80. PubMed ID: 23529933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sr-substituted hydroxyapatites for osteoporotic bone replacement.
    Landi E; Tampieri A; Celotti G; Sprio S; Sandri M; Logroscino G
    Acta Biomater; 2007 Nov; 3(6):961-9. PubMed ID: 17618844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Preparation of chitosan-encapsulated porous calcium polyphosphate bioceramic].
    Fan C; Liu D; Ren Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1355-8. PubMed ID: 18277683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing and properties of Na-doped porous calcium polyphosphates - Mechanical properties and in vitro degradation characteristics.
    Pilliar RM; Hu X; Grynpas MD; Kandel RA
    J Mech Behav Biomed Mater; 2019 Mar; 91():355-365. PubMed ID: 30658249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on crystallinity of carbonate apatite foam prepared from alpha-tricalcium phosphate by hydrothermal treatment.
    Takeuchi A; Munar ML; Wakae H; Maruta M; Matsuya S; Tsuru K; Ishikawa K
    Biomed Mater Eng; 2009; 19(2-3):205-11. PubMed ID: 19581715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.