These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 15646363)
41. [A new loading bioreactor for bone tissue-engineering applications]. Zhang C; Zhang X; Wang F; Wu J; Wang Y; Lu Q Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):804-8, 832. PubMed ID: 16156278 [TBL] [Abstract][Full Text] [Related]
42. Scaffold-free cartilage by rotational culture for tissue engineering. Furukawa KS; Imura K; Tateishi T; Ushida T J Biotechnol; 2008 Jan; 133(1):134-45. PubMed ID: 17913274 [TBL] [Abstract][Full Text] [Related]
43. Dependence of alignment direction on magnitude of strain in esophageal smooth muscle cells. Ritchie AC; Wijaya S; Ong WF; Zhong SP; Chian KS Biotechnol Bioeng; 2009 Apr; 102(6):1703-11. PubMed ID: 19170241 [TBL] [Abstract][Full Text] [Related]
44. Effects of flow shear stress and mass transport on the construction of a large-scale tissue-engineered bone in a perfusion bioreactor. Li D; Tang T; Lu J; Dai K Tissue Eng Part A; 2009 Oct; 15(10):2773-83. PubMed ID: 19226211 [TBL] [Abstract][Full Text] [Related]
45. Modulation of extracellular matrix synthesis and alkaline phosphatase activity of periodontal ligament cells by mechanical stress. Ozaki S; Kaneko S; Podyma-Inoue KA; Yanagishita M; Soma K J Periodontal Res; 2005 Apr; 40(2):110-7. PubMed ID: 15733145 [TBL] [Abstract][Full Text] [Related]
46. Biocompatibility of Poly(epsilon-caprolactone) scaffold modified by chitosan--the fibroblasts proliferation in vitro. Mei N; Chen G; Zhou P; Chen X; Shao ZZ; Pan LF; Wu CG J Biomater Appl; 2005 Apr; 19(4):323-39. PubMed ID: 15788428 [TBL] [Abstract][Full Text] [Related]
47. Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts. Figallo E; Flaibani M; Zavan B; Abatangelo G; Elvassore N Biotechnol Prog; 2007; 23(1):210-6. PubMed ID: 17269690 [TBL] [Abstract][Full Text] [Related]
48. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Olivares AL; Marsal E; Planell JA; Lacroix D Biomaterials; 2009 Oct; 30(30):6142-9. PubMed ID: 19674779 [TBL] [Abstract][Full Text] [Related]
49. Effect of cyclic stretching on the tensile properties of patellar tendon and medial collateral ligament in rat. Su WR; Chen HH; Luo ZP Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):911-7. PubMed ID: 18485553 [TBL] [Abstract][Full Text] [Related]
50. Extracellular matrix-polymer hybrid materials produced in a pulsed-flow bioreactor system. Aulin C; Foroughi F; Brown R; Hilborn J J Tissue Eng Regen Med; 2009 Mar; 3(3):188-95. PubMed ID: 19247985 [TBL] [Abstract][Full Text] [Related]
51. Human chondrocytes differentially express matrix modulators during in vitro expansion for tissue engineering. Goessler UR; Bieback K; Bugert P; Naim R; Schafer C; Sadick H; Hormann K; Riedel F Int J Mol Med; 2005 Oct; 16(4):509-15. PubMed ID: 16142380 [TBL] [Abstract][Full Text] [Related]
52. The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Zeichen J; van Griensven M; Bosch U Am J Sports Med; 2000; 28(6):888-92. PubMed ID: 11101114 [TBL] [Abstract][Full Text] [Related]
53. On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Ugolini GS; Rasponi M; Pavesi A; Santoro R; Kamm R; Fiore GB; Pesce M; Soncini M Biotechnol Bioeng; 2016 Apr; 113(4):859-69. PubMed ID: 26444553 [TBL] [Abstract][Full Text] [Related]
54. In vitro study of the effect of cyclic strains on the dermal fibroblast (GM3384) morphology--mapping of cell responses to strain field. Xie KY; Yang L; Chen K; Li Q Med Eng Phys; 2012 Sep; 34(7):826-31. PubMed ID: 21996357 [TBL] [Abstract][Full Text] [Related]
55. The cellular responses of corneal fibroblasts to cyclic stretching loads. Tan HY; Wu YF; Wang CY; Lin SJ; Ma YH; Young TH Exp Eye Res; 2023 Dec; 237():109696. PubMed ID: 37890758 [TBL] [Abstract][Full Text] [Related]
56. Fibroblast responses to cyclic mechanical stretching depend on cell orientation to the stretching direction. Wang JH; Yang G; Li Z; Shen W J Biomech; 2004 Apr; 37(4):573-6. PubMed ID: 14996570 [TBL] [Abstract][Full Text] [Related]
57. Pneumatically actuated cell-stretching array platform for engineering cell patterns in vitro. Kamble H; Vadivelu R; Barton M; Shiddiky MJA; Nguyen NT Lab Chip; 2018 Feb; 18(5):765-774. PubMed ID: 29410989 [TBL] [Abstract][Full Text] [Related]
58. Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro. Ugolini GS; Pavesi A; Rasponi M; Fiore GB; Kamm R; Soncini M Elife; 2017 Mar; 6():. PubMed ID: 28315522 [TBL] [Abstract][Full Text] [Related]
59. The effect of fluid shear stress on fibroblasts and stem cells on plane and groove topographies. Lei X; Liu B; Wu H; Wu X; Wang XL; Song Y; Zhang SS; Li JQ; Bi L; Pei GX Cell Adh Migr; 2020 Dec; 14(1):12-23. PubMed ID: 31942821 [TBL] [Abstract][Full Text] [Related]
60. Cyclic stretching of soft substrates induces spreading and growth. Cui Y; Hameed FM; Yang B; Lee K; Pan CQ; Park S; Sheetz M Nat Commun; 2015 Feb; 6():6333. PubMed ID: 25704457 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]