These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15646615)

  • 1. Intracellular microrheology as a tool for the measurement of the local mechanical properties of live cells.
    Kole TP; Tseng Y; Wirtz D
    Methods Cell Biol; 2004; 78():45-64. PubMed ID: 15646615
    [No Abstract]   [Full Text] [Related]  

  • 2. Rho kinase regulates the intracellular micromechanical response of adherent cells to rho activation.
    Kole TP; Tseng Y; Huang L; Katz JL; Wirtz D
    Mol Biol Cell; 2004 Jul; 15(7):3475-84. PubMed ID: 15146061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromechanical mapping of live cells by multiple-particle-tracking microrheology.
    Tseng Y; Kole TP; Wirtz D
    Biophys J; 2002 Dec; 83(6):3162-76. PubMed ID: 12496086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microrheology, stress fluctuations, and active behavior of living cells.
    Lau AW; Hoffman BD; Davies A; Crocker JC; Lubensky TC
    Phys Rev Lett; 2003 Nov; 91(19):198101. PubMed ID: 14611619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy.
    Berret JF
    Nat Commun; 2016 Jan; 7():10134. PubMed ID: 26729062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular viscoelasticity of HeLa cells during cell division studied by video particle-tracking microrheology.
    Chen YQ; Kuo CY; Wei MT; Wu K; Su PT; Huang CS; Chiou A
    J Biomed Opt; 2014 Jan; 19(1):011008. PubMed ID: 23864037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using cell monolayer rheology to probe average single cell mechanical properties.
    Sander M; Flesch J; Ott A
    Biorheology; 2015; 52(4):269-78. PubMed ID: 26639359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological microscopy: local mechanical properties from microrheology.
    Chen DT; Weeks ER; Crocker JC; Islam MF; Verma R; Gruber J; Levine AJ; Lubensky TC; Yodh AG
    Phys Rev Lett; 2003 Mar; 90(10):108301. PubMed ID: 12689039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping intracellular mechanics on micropatterned substrates.
    Mandal K; Asnacios A; Goud B; Manneville JB
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7159-E7168. PubMed ID: 27799529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanics of living cells measured by laser tracking microrheology.
    Yamada S; Wirtz D; Kuo SC
    Biophys J; 2000 Apr; 78(4):1736-47. PubMed ID: 10733956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational tensegrity model predicts dynamic rheological behaviors in living cells.
    Sultan C; Stamenović D; Ingber DE
    Ann Biomed Eng; 2004 Apr; 32(4):520-30. PubMed ID: 15117025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Softness, strength and self-repair in intermediate filament networks.
    Wagner OI; Rammensee S; Korde N; Wen Q; Leterrier JF; Janmey PA
    Exp Cell Res; 2007 Jun; 313(10):2228-35. PubMed ID: 17524395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos.
    Daniels BR; Masi BC; Wirtz D
    Biophys J; 2006 Jun; 90(12):4712-9. PubMed ID: 16581841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelasticity of intermediate filament networks.
    Janmey PA; Shah JV; Janssen KP; Schliwa M
    Subcell Biochem; 1998; 31():381-97. PubMed ID: 9932499
    [No Abstract]   [Full Text] [Related]  

  • 15. Microrheology of keratin networks in cancer cells.
    Paust T; Paschke S; Beil M; Marti O
    Phys Biol; 2013 Dec; 10(6):065008. PubMed ID: 24305115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chapter 18: Sensing cytoskeletal mechanics by ballistic intracellular nanorheology (BIN) coupled with cell transfection.
    Thompson MS; Wirtz D
    Methods Cell Biol; 2008; 89():467-86. PubMed ID: 19118687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells.
    Mahaffy RE; Shih CK; MacKintosh FC; Käs J
    Phys Rev Lett; 2000 Jul; 85(4):880-3. PubMed ID: 10991422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical rheology of biological cells.
    Wottawah F; Schinkinger S; Lincoln B; Ananthakrishnan R; Romeyke M; Guck J; Käs J
    Phys Rev Lett; 2005 Mar; 94(9):098103. PubMed ID: 15784006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generic theory of active polar gels: a paradigm for cytoskeletal dynamics.
    Kruse K; Joanny JF; Jülicher F; Prost J; Sekimoto K
    Eur Phys J E Soft Matter; 2005 Jan; 16(1):5-16. PubMed ID: 15688136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermediate filament cytoskeletal system: dynamic and mechanical properties.
    Goldman RD; Clement S; Khuon S; Moir R; Trejo-Skalli A; Spann T; Yoon M
    Biol Bull; 1998 Jun; 194(3):361-2; discussion 362-3. PubMed ID: 9664663
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.