BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 15647167)

  • 21. Differential scanning calorimetry study of glycerinated rabbit psoas muscle fibres in intermediate state of ATP hydrolysis.
    Dergez T; Lorinczy D; Könczöl F; Farkas N; Belagyi J
    BMC Struct Biol; 2007 Jun; 7():41. PubMed ID: 17588264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initiation of the power stroke in muscle: insights from the phosphate analog AlF4.
    Kraft T; Mählmann E; Mattei T; Brenner B
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13861-6. PubMed ID: 16174728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of regulation of phosphate dissociation from actomyosin-ADP-Pi by thin filament proteins.
    Heeley DH; Belknap B; White HD
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16731-6. PubMed ID: 12486217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiscale modeling of structural dynamics underlying force generation and product release in actomyosin complex.
    Zheng W
    Proteins; 2010 Feb; 78(3):638-60. PubMed ID: 19790263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A kinetic model that explains the effect of inorganic phosphate on the mechanics and energetics of isometric contraction of fast skeletal muscle.
    Linari M; Caremani M; Lombardi V
    Proc Biol Sci; 2010 Jan; 277(1678):19-27. PubMed ID: 19812088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in orientation of actin during contraction of muscle.
    Borejdo J; Shepard A; Dumka D; Akopova I; Talent J; Malka A; Burghardt TP
    Biophys J; 2004 Apr; 86(4):2308-17. PubMed ID: 15041669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Caldesmon inhibits formation of strongly bound myosin cross-bridges and activates an ability of weakly bound cross-bridges to transform actin monomers to the off-conformation].
    Vikhorev PG; Vikhoreva NN; Rosliakova MA; Chacko S; Borovikov IuS
    Tsitologiia; 2000; 42(5):444-53. PubMed ID: 10890050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Smooth muscle myosin: regulation and properties.
    Somlyo AV; Khromov AS; Webb MR; Ferenczi MA; Trentham DR; He ZH; Sheng S; Shao Z; Somlyo AP
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1921-30. PubMed ID: 15647168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle.
    Irving M; St Claire Allen T; Sabido-David C; Craik JS; Brandmeier B; Kendrick-Jones J; Corrie JE; Trentham DR; Goldman YE
    Nature; 1995 Jun; 375(6533):688-91. PubMed ID: 7791902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model of crossbridge action: the effects of ATP, ADP and Pi.
    Pate E; Cooke R
    J Muscle Res Cell Motil; 1989 Jun; 10(3):181-96. PubMed ID: 2527246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of substituting uridine triphosphate for ATP on the crossbridge cycle of rabbit muscle.
    Seow CY; White HD; Ford LE
    J Physiol; 2001 Dec; 537(Pt 3):907-21. PubMed ID: 11744764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boundaries steer the contraction of active gels.
    Schuppler M; Keber FC; Kröger M; Bausch AR
    Nat Commun; 2016 Oct; 7():13120. PubMed ID: 27739426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Demonstration of mechanochemical coupling in systems containing actin, atp and non-aggregating active myosin derivatives.
    Oplatka A; Gadasi H; Tirosh R; Lamed Y; Muhlrad A; Liron N
    J Mechanochem Cell Motil; 1974 Mar; 2(4):295-306. PubMed ID: 4277009
    [No Abstract]   [Full Text] [Related]  

  • 35. [A mathematical model of mechanical responses of contracting muscle fibres to temperature jumps].
    Kubasova NA; Bershitskiĭ SIu; Tsaturian AK
    Biofizika; 2009; 54(4):718-25. PubMed ID: 19795795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of single actin-myosin interactions.
    Finer JT; Mehta AD; Spudich JA
    Biophys J; 1995 Apr; 68(4 Suppl):291S-296S; discussion 296S-297S. PubMed ID: 7787094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanokinetics of rapid tension recovery in muscle: the Myosin working stroke is followed by a slower release of phosphate.
    Smith DA; Sleep J
    Biophys J; 2004 Jul; 87(1):442-56. PubMed ID: 15240478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A physical model of ATP-induced actin-myosin movement in vitro.
    Tawada K; Sekimoto K
    Biophys J; 1991 Feb; 59(2):343-56. PubMed ID: 1826220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus.
    Greenberg MJ; Mealy TR; Jones M; Szczesna-Cordary D; Moore JR
    Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R989-96. PubMed ID: 20089714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structure of the rigor complex and its implications for the power stroke.
    Holmes KC; Schröder RR; Sweeney HL; Houdusse A
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1819-28. PubMed ID: 15647158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.