BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15647255)

  • 21. Crystal structure of a DNA polymerase sliding clamp from a Gram-positive bacterium.
    Argiriadi MA; Goedken ER; Bruck I; O'Donnell M; Kuriyan J
    BMC Struct Biol; 2006 Jan; 6():2. PubMed ID: 16403212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymerase chaperoning and multiple ATPase sites enable the E. coli DNA polymerase III holoenzyme to rapidly form initiation complexes.
    Downey CD; Crooke E; McHenry CS
    J Mol Biol; 2011 Sep; 412(3):340-53. PubMed ID: 21820444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA structure requirements for the Escherichia coli gamma complex clamp loader and DNA polymerase III holoenzyme.
    Yao N; Leu FP; Anjelkovic J; Turner J; O'Donnell M
    J Biol Chem; 2000 Apr; 275(15):11440-50. PubMed ID: 10753961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of opening a sliding clamp.
    Douma LG; Yu KK; England JK; Levitus M; Bloom LB
    Nucleic Acids Res; 2017 Sep; 45(17):10178-10189. PubMed ID: 28973453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical and structural analyses reveal critical residues in δ subunit affecting its bindings to β' subunit of Staphylococcus aureus RNA polymerase.
    Lin Z; Wang F; Shang Z; Lin W
    Biochem Biophys Res Commun; 2021 Mar; 545():98-104. PubMed ID: 33548630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A single subunit directs the assembly of the Escherichia coli DNA sliding clamp loader.
    Park AY; Jergic S; Politis A; Ruotolo BT; Hirshberg D; Jessop LL; Beck JL; Barsky D; O'Donnell M; Dixon NE; Robinson CV
    Structure; 2010 Mar; 18(3):285-92. PubMed ID: 20223211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex.
    Gulbis JM; Kazmirski SL; Finkelstein J; Kelman Z; O'Donnell M; Kuriyan J
    Eur J Biochem; 2004 Jan; 271(2):439-49. PubMed ID: 14717711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair.
    López de Saro FJ; Georgescu RE; Goodman MF; O'Donnell M
    EMBO J; 2003 Dec; 22(23):6408-18. PubMed ID: 14633999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellular DNA replicases: components and dynamics at the replication fork.
    Johnson A; O'Donnell M
    Annu Rev Biochem; 2005; 74():283-315. PubMed ID: 15952889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein trafficking on sliding clamps.
    López de Saro F; Georgescu RE; Leu F; O'Donnell M
    Philos Trans R Soc Lond B Biol Sci; 2004 Jan; 359(1441):25-30. PubMed ID: 15065653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenotypes of
    Flåtten I; Helgesen E; Pedersen IB; Waldminghaus T; Rothe C; Taipale R; Johnsen L; Skarstad K
    J Bacteriol; 2017 Dec; 199(24):. PubMed ID: 28947673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence measurements on the E.coli DNA polymerase clamp loader: implications for conformational changes during ATP and clamp binding.
    Goedken ER; Levitus M; Johnson A; Bustamante C; O'Donnell M; Kuriyan J
    J Mol Biol; 2004 Mar; 336(5):1047-59. PubMed ID: 15037068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial replicases and related polymerases.
    McHenry CS
    Curr Opin Chem Biol; 2011 Oct; 15(5):587-94. PubMed ID: 21855395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences.
    McHenry CS
    Mol Microbiol; 2003 Sep; 49(5):1157-65. PubMed ID: 12940977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The replication clamp-loading machine at work in the three domains of life.
    Indiani C; O'Donnell M
    Nat Rev Mol Cell Biol; 2006 Oct; 7(10):751-61. PubMed ID: 16955075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III.
    Jeruzalmi D; Yurieva O; Zhao Y; Young M; Stewart J; Hingorani M; O'Donnell M; Kuriyan J
    Cell; 2001 Aug; 106(4):417-28. PubMed ID: 11525728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution structure of an "open" E. coli Pol III clamp loader sliding clamp complex.
    Tondnevis F; Weiss TM; Matsui T; Bloom LB; McKenna R
    J Struct Biol; 2016 Jun; 194(3):272-81. PubMed ID: 26968362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The DNA polymerase III holoenzyme contains γ and is not a trimeric polymerase.
    Dohrmann PR; Correa R; Frisch RL; Rosenberg SM; McHenry CS
    Nucleic Acids Res; 2016 Feb; 44(3):1285-97. PubMed ID: 26786318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual functions, clamp opening and primer-template recognition, define a key clamp loader subunit.
    Magdalena Coman M; Jin M; Ceapa R; Finkelstein J; O'Donnell M; Chait BT; Hingorani MM
    J Mol Biol; 2004 Oct; 342(5):1457-69. PubMed ID: 15364574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pre-Steady-State Kinetic Characterization of an Antibiotic-Resistant Mutant of Staphylococcus aureus DNA Polymerase PolC.
    Nelson-Rigg R; Fagan SP; Jaremko WJ; Pata JD
    Antimicrob Agents Chemother; 2023 Jun; 67(6):e0157122. PubMed ID: 37222615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.