BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 15647343)

  • 1. Modulation of hypertonicity-induced aquaporin-1 by sodium chloride, urea, betaine, and heat shock in murine renal medullary cells.
    Umenishi F; Yoshihara S; Narikiyo T; Schrier RW
    J Am Soc Nephrol; 2005 Mar; 16(3):600-7. PubMed ID: 15647343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypertonic induction of aquaporin-1 water channel independent of transcellular osmotic gradient.
    Umenishi F; Narikiyo T; Schrier RW
    Biochem Biophys Res Commun; 2004 Dec; 325(2):595-9. PubMed ID: 15530434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual effects of hypertonicity on aquaporin-2 expression in cultured renal collecting duct principal cells.
    Hasler U; Vinciguerra M; Vandewalle A; Martin PY; Féraille E
    J Am Soc Nephrol; 2005 Jun; 16(6):1571-82. PubMed ID: 15843469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urea stress is more akin to EGF exposure than to hypertonic stress in renal medullary cells.
    Tian W; Cohen DM
    Am J Physiol Renal Physiol; 2002 Sep; 283(3):F388-98. PubMed ID: 12167588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of heat shock protein 27 and 70 in renal papillary collecting duct and interstitial cells - implications for urea resistance.
    Neuhofer W; Fraek ML; Ouyang N; Beck FX
    J Physiol; 2005 May; 564(Pt 3):715-22. PubMed ID: 15718262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three GADD45 isoforms contribute to hypertonic stress phenotype of murine renal inner medullary cells.
    Chakravarty D; Cai Q; Ferraris JD; Michea L; Burg MB; Kültz D
    Am J Physiol Renal Physiol; 2002 Nov; 283(5):F1020-9. PubMed ID: 12372778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene.
    Umenishi F; Schrier RW
    J Biol Chem; 2003 May; 278(18):15765-70. PubMed ID: 12600999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect on stability, degradation, expression, and targeting of aquaporin-2 water channel by hyperosmolality in renal epithelial cells.
    Umenishi F; Narikiyo T; Schrier RW
    Biochem Biophys Res Commun; 2005 Dec; 338(3):1593-9. PubMed ID: 16288724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells.
    Burg MB
    J Exp Zool; 1994 Feb; 268(2):171-5. PubMed ID: 8301253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycerophosphocholine and betaine counteract the effect of urea on pyruvate kinase.
    Burg MB; Kwon ED; Peters EM
    Kidney Int Suppl; 1996 Dec; 57():S100-4. PubMed ID: 8941929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The expression of aquaporin-1 in the medulla of the kidney is dependent on the transcription factor associated with hypertonicity, TonEBP.
    Lanaspa MA; Andres-Hernando A; Li N; Rivard CJ; Cicerchi C; Roncal-Jimenez C; Schrier RW; Berl T
    J Biol Chem; 2010 Oct; 285(41):31694-703. PubMed ID: 20639513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Poria cocos on hypertonic stress-induced water channel expression and apoptosis in renal collecting duct cells.
    Lee SM; Lee YJ; Yoon JJ; Kang DG; Lee HS
    J Ethnopharmacol; 2012 May; 141(1):368-76. PubMed ID: 22414475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic hyperosmolarity mediates constitutive expression of molecular chaperones and resistance to injury.
    Santos BC; Pullman JM; Chevaile A; Welch WJ; Gullans SR
    Am J Physiol Renal Physiol; 2003 Mar; 284(3):F564-74. PubMed ID: 12409277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of a novel hypertonicity-responsive element in the human aquaporin-1 gene.
    Umenishi F; Schrier RW
    Biochem Biophys Res Commun; 2002 Apr; 292(3):771-5. PubMed ID: 11922632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pretreatment with hypertonic NaCl protects MDCK cells against high urea concentrations.
    Neuhofer W; Müller E; Burger-Kentischer A; Fraek ML; Thurau K; Beck F
    Pflugers Arch; 1998 Feb; 435(3):407-14. PubMed ID: 9426298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypertonic sodium chloride and mannitol induces COX-2 via different signaling pathways in mouse cortical collecting duct M-1 cells.
    Lim W; Jung J; Surh Y; Inoue H; Lee Y
    Life Sci; 2007 May; 80(22):2085-92. PubMed ID: 17477937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting the ratio of different organic osmolytes in renal medullary cells.
    Moriyama T; Garcia-Perez A; Burg MB
    Am J Physiol; 1990 Nov; 259(5 Pt 2):F847-58. PubMed ID: 2240234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmoregulation of betaine transport in mammalian renal medullary cells.
    Nakanishi T; Turner RJ; Burg MB
    Am J Physiol; 1990 Apr; 258(4 Pt 2):F1061-7. PubMed ID: 2330972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium depletion enhances cisplatin-induced nephrotoxicity.
    Lajer H; Kristensen M; Hansen HH; Nielsen S; Frøkiaer J; Ostergaard LF; Christensen S; Daugaard G; Jonassen TE
    Cancer Chemother Pharmacol; 2005 Nov; 56(5):535-42. PubMed ID: 15947931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of aquaporin-1 for NaCl-driven water transport across descending vasa recta.
    Pallone TL; Edwards A; Ma T; Silldorff EP; Verkman AS
    J Clin Invest; 2000 Jan; 105(2):215-22. PubMed ID: 10642600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.