BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 15647352)

  • 1. Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter.
    Su ZZ; Sarkar D; Emdad L; Duigou GJ; Young CS; Ware J; Randolph A; Valerie K; Fisher PB
    Proc Natl Acad Sci U S A; 2005 Jan; 102(4):1059-64. PubMed ID: 15647352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PEA3 sites within the progression elevated gene-3 (PEG-3) promoter and mitogen-activated protein kinase contribute to differential PEG-3 expression in Ha-ras and v-raf oncogene transformed rat embryo cells.
    Su Z; Shi Y; Friedman R; Qiao L; McKinstry R; Hinman D; Dent P; Fisher PB
    Nucleic Acids Res; 2001 Apr; 29(8):1661-71. PubMed ID: 11292838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation between AP1 and PEA3 sites within the progression elevated gene-3 (PEG-3) promoter regulate basal and differential expression of PEG-3 during progression of the oncogenic phenotype in transformed rat embryo cells.
    Su Z; Shi Y; Fisher PB
    Oncogene; 2000 Jul; 19(30):3411-21. PubMed ID: 10918598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progression elevated gene-3 promoter (PEG-Prom) confers cancer cell selectivity to human polynucleotide phosphorylase (hPNPase(old-35))-mediated growth suppression.
    Chan I; Lebedeva IV; Su ZZ; Sarkar D; Valerie K; Fisher PB
    J Cell Physiol; 2008 May; 215(2):401-9. PubMed ID: 17960560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential molecular mechanism for rodent tumorigenesis: mutational generation of Progression Elevated Gene-3 (PEG-3).
    Su ZZ; Emdad L; Sarkar D; Randolph A; Valerie K; Yacoub A; Dent P; Fisher PB
    Oncogene; 2005 Mar; 24(13):2247-55. PubMed ID: 15674324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subtraction hybridization identifies a transformation progression-associated gene PEG-3 with sequence homology to a growth arrest and DNA damage-inducible gene.
    Su ZZ; Shi Y; Fisher PB
    Proc Natl Acad Sci U S A; 1997 Aug; 94(17):9125-30. PubMed ID: 9256446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eradication of therapy-resistant human prostate tumors using a cancer terminator virus.
    Sarkar D; Lebedeva IV; Su ZZ; Park ES; Chatman L; Vozhilla N; Dent P; Curiel DT; Fisher PB
    Cancer Res; 2007 Jun; 67(11):5434-42. PubMed ID: 17545625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEG-3, a nontransforming cancer progression gene, is a positive regulator of cancer aggressiveness and angiogenesis.
    Su ZZ; Goldstein NI; Jiang H; Wang MN; Duigou GJ; Young CS; Fisher PB
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):15115-20. PubMed ID: 10611347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic.
    Sarkar S; Quinn BA; Shen XN; Dash R; Das SK; Emdad L; Klibanov AL; Wang XY; Pellecchia M; Sarkar D; Fisher PB
    Oncotarget; 2015 May; 6(13):10712-27. PubMed ID: 25926554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progression elevated gene-3, PEG-3, induces genomic instability in rodent and human tumor cells.
    Su ZZ; Gopalkrishnan RV; Narayan G; Dent P; Fisher PB
    J Cell Physiol; 2002 Jul; 192(1):34-44. PubMed ID: 12115734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progression elevated gene-3 (PEG-3) induces pleiotropic effects on tumor progression: modulation of genomic stability and invasion.
    Emdad L; Sarkar D; Su ZZ; Boukerche H; Bar-Eli M; Fisher PB
    J Cell Physiol; 2005 Jan; 202(1):135-46. PubMed ID: 15389539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of a Non-Cancer-Selective Promoter into a Cancer-Selective Promoter.
    Bhoopathi P; Pradhan AK; Kumar A; Maji S; Mannangatti P; Deng X; Bandyopadhyay D; Sarkar D; Wang XY; Landry JW; Das SK; Emdad L; Fisher PB
    Cancers (Basel); 2022 Mar; 14(6):. PubMed ID: 35326649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK.
    Sarkar D; Su ZZ; Lebedeva IV; Sauane M; Gopalkrishnan RV; Valerie K; Dent P; Fisher PB
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):10054-9. PubMed ID: 12114539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionizing radiation modulates vascular endothelial growth factor (VEGF) expression through multiple mitogen activated protein kinase dependent pathways.
    Park JS; Qiao L; Su ZZ; Hinman D; Willoughby K; McKinstry R; Yacoub A; Duigou GJ; Young CS; Grant S; Hagan MP; Ellis E; Fisher PB; Dent P
    Oncogene; 2001 May; 20(25):3266-80. PubMed ID: 11423976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of teratocarcinoma growth by soluble TRAIL gene expression driven by the progression-elevated gene-3 promoter.
    Jiang XL; Du LL; Yang S; Chen LS; Lu GX
    Cancer Biol Ther; 2009 Aug; 8(15):1517-24. PubMed ID: 19823015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation primary response genes and proto-oncogenes as positive and negative regulators of terminal hematopoietic cell differentiation.
    Liebermann DA; Hoffman B
    Stem Cells; 1994 Jul; 12(4):352-69. PubMed ID: 7951003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer-specific gene therapy.
    Lo HW; Day CP; Hung MC
    Adv Genet; 2005; 54():235-55. PubMed ID: 16096014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells.
    Su Z; Lebedeva IV; Gopalkrishnan RV; Goldstein NI; Stein CA; Reed JC; Dent P; Fisher PB
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10332-7. PubMed ID: 11526239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor alpha-positive breast cancer cells.
    Phelps M; Darley M; Primrose JN; Blaydes JP
    Cancer Res; 2003 May; 63(10):2616-23. PubMed ID: 12750288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rearrangement of the AML1/CBFA2 gene in myeloid leukemia with the 3;21 translocation: expression of co-existing multiple chimeric genes with similar functions as transcriptional repressors, but with opposite tumorigenic properties.
    Zent C; Kim N; Hiebert S; Zhang DE; Tenen DG; Rowley JD; Nucifora G
    Curr Top Microbiol Immunol; 1996; 211():243-52. PubMed ID: 8585955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.