These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions. Adamian L; Ouyang Z; Tseng YY; Liang J Photochem Photobiol; 2006; 82(6):1426-35. PubMed ID: 16922602 [TBL] [Abstract][Full Text] [Related]
4. Counterion displacement in the molecular evolution of the rhodopsin family. Terakita A; Koyanagi M; Tsukamoto H; Yamashita T; Miyata T; Shichida Y Nat Struct Mol Biol; 2004 Mar; 11(3):284-9. PubMed ID: 14981504 [TBL] [Abstract][Full Text] [Related]
5. Formation of new genes explains lower intron density in mammalian Rhodopsin G protein-coupled receptors. Fridmanis D; Fredriksson R; Kapa I; Schiöth HB; Klovins J Mol Phylogenet Evol; 2007 Jun; 43(3):864-80. PubMed ID: 17188520 [TBL] [Abstract][Full Text] [Related]
6. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments. Kuwayama S; Imai H; Morizumi T; Shichida Y Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246 [TBL] [Abstract][Full Text] [Related]
7. Comparison of stability predictions and simulated unfolding of rhodopsin structures. Tastan O; Yu E; Ganapathiraju M; Aref A; Rader AJ; Klein-Seetharaman J Photochem Photobiol; 2007; 83(2):351-62. PubMed ID: 17576347 [TBL] [Abstract][Full Text] [Related]
8. Parallel amino acid replacements in the rhodopsins of the rockfishes (Sebastes spp.) associated with shifts in habitat depth. Sivasundar A; Palumbi SR J Evol Biol; 2010 Jun; 23(6):1159-69. PubMed ID: 20345807 [TBL] [Abstract][Full Text] [Related]
9. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
10. Modelling of third cytoplasmic loop of bovine rhodopsin by multicanonical molecular dynamics. Watanabe YS; Fukunishi Y; Nakamura H J Mol Graph Model; 2004 Sep; 23(1):59-68. PubMed ID: 15331054 [TBL] [Abstract][Full Text] [Related]
11. Electric charge divergence in proteins: insights into the evolution of their three-dimensional properties. Sato Y; Nishida M Gene; 2009 Jul; 441(1-2):3-11. PubMed ID: 18652881 [TBL] [Abstract][Full Text] [Related]
13. The sequence and phylogenetic analysis of avian reovirus genome segments M1, M2, and M3 encoding the minor core protein muA, the major outer capsid protein muB, and the nonstructural protein muNS. Su YP; Su BS; Shien JH; Liu HJ; Lee LH J Virol Methods; 2006 May; 133(2):146-57. PubMed ID: 16337282 [TBL] [Abstract][Full Text] [Related]
14. Using a strategy based on the concept of convergent evolution to identify residue substitutions responsible for thermal adaptation. Lin YS Proteins; 2008 Oct; 73(1):53-62. PubMed ID: 18384082 [TBL] [Abstract][Full Text] [Related]
15. Statistical analysis and prediction of functional residues effective for GPCR-G-protein coupling selectivity. Muramatsu T; Suwa M Protein Eng Des Sel; 2006 Jun; 19(6):277-83. PubMed ID: 16565146 [TBL] [Abstract][Full Text] [Related]
16. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Fenn JD; Song H; Cameron SL; Whiting MF Mol Phylogenet Evol; 2008 Oct; 49(1):59-68. PubMed ID: 18672078 [TBL] [Abstract][Full Text] [Related]
17. Structural determinants of protein evolution are context-sensitive at the residue level. Franzosa EA; Xia Y Mol Biol Evol; 2009 Oct; 26(10):2387-95. PubMed ID: 19597162 [TBL] [Abstract][Full Text] [Related]
18. 3D modeling of the activated states of constitutively active mutants of rhodopsin. Nikiforovich GV; Marshall GR Biochem Biophys Res Commun; 2006 Jun; 345(1):430-7. PubMed ID: 16682009 [TBL] [Abstract][Full Text] [Related]