These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 15647545)

  • 1. Analysis of soils to demonstrate sustained organic carbon removal during soil aquifer treatment.
    Fox P; Aboshanp W; Alsamadi B
    J Environ Qual; 2005; 34(1):156-63. PubMed ID: 15647545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using soil biomass as an indicator for the biological removal of effluent-derived organic carbon during soil infiltration.
    Rauch-Williams T; Drewes JE
    Water Res; 2006 Mar; 40(5):961-8. PubMed ID: 16483630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the removal potential of soil-aquifer treatment systems for bulk organic matter.
    Rauch T; Drewes JE
    Water Sci Technol; 2004; 50(2):245-53. PubMed ID: 15344798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the removal potential of soil-aquifer treatment system (soil column) for endotoxin.
    Guizani M; Kato H; Funamizu N
    J Environ Monit; 2011 Jun; 13(6):1716-22. PubMed ID: 21566853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of effluent organic matter (EfOM) and natural organic matter (NOM) through riverbank filtration.
    Maeng SK; Sharma SK; Magic-Knezev A; Amy G
    Water Sci Technol; 2008; 57(12):1999-2007. PubMed ID: 18587190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of irrigation water quality on organic matter, Cd and Cu mobility in soils of Central Mexico.
    Herre A; Siebe C; Kaupenjohann M
    Water Sci Technol; 2004; 50(2):277-84. PubMed ID: 15344802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment.
    Cha W; Kim J; Choi H
    Water Res; 2006 Mar; 40(5):1034-42. PubMed ID: 16490232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size and XAD fractionations of trihalomethane precursors from soils.
    Chow AT; Guo F; Gao S; Breuer RS
    Chemosphere; 2006 Mar; 62(10):1636-46. PubMed ID: 16095666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?
    Grybos M; Davranche M; Gruau G; Petitjean P
    J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of soil components on adsorption-desorption of hazardous organics-development of low cost technology for reclamation of hazardous waste dumpsites.
    Khan Z; Anjaneyulu Y
    J Hazard Mater; 2005 Feb; 118(1-3):161-9. PubMed ID: 15721540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium).
    Du Laing G; Chapagain SK; Dewispelaere M; Meers E; Kazama F; Tack FM; Rinklebe J; Verloo MG
    J Environ Monit; 2009 Apr; 11(4):873-81. PubMed ID: 19557243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of wastewater effluents for soil aquifer treatment in South Korea.
    Cha W; Choi H; Kim J; Kim IS
    Water Sci Technol; 2004; 50(2):315-22. PubMed ID: 15344807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial groundwater treatment: biofilm activity and organic carbon removal performance.
    Långmark J; Storey MV; Ashbolt NJ; Stenström TA
    Water Res; 2004 Feb; 38(3):740-8. PubMed ID: 14723944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of high explosives to water-dispersible clay: influence of organic carbon, aluminosilicate clay, and extractable iron.
    Dontsova KM; Hayes C; Pennington JC; Porter B
    J Environ Qual; 2009; 38(4):1458-65. PubMed ID: 19465721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand.
    Chang YY; Song KH; Yang JK
    J Hazard Mater; 2008 Feb; 150(3):565-72. PubMed ID: 17570581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments.
    Bauer M; Blodau C
    Sci Total Environ; 2006 Feb; 354(2-3):179-90. PubMed ID: 16398994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils.
    Liu Z; He Y; Xu J; Huang P; Jilani G
    Environ Pollut; 2008 Mar; 152(1):163-71. PubMed ID: 17601643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of organics during soil-aquifer treatment: sustainability of removals in the field.
    Quanrud DM; Hafer J; Karpiscak MM; Zhang J; Lansey KE; Arnold RG
    Water Res; 2003 Aug; 37(14):3401-11. PubMed ID: 12834733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of organic matter and iron oxides on quaternary herbicide sorption-desorption in vineyard-devoted soils.
    Pateiro-Moure M; Pérez-Novo C; Arias-Estévez M; Rial-Otero R; Simal-Gándara J
    J Colloid Interface Sci; 2009 May; 333(2):431-8. PubMed ID: 19268966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater.
    Lucho-Constantino CA; Alvarez-Suárez M; Beltrán-Hernández RI; Prieto-García F; Poggi-Varaldo HM
    Environ Int; 2005 Apr; 31(3):313-23. PubMed ID: 15734185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.