BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15647949)

  • 1. Relation between intraocular pressure and size of transverse sinuses.
    Kantarci M; Dane S; Gumustekin K; Onbas O; Alper F; Okur A; Aslankurt M; Yazici AT
    Neuroradiology; 2005 Jan; 47(1):46-50. PubMed ID: 15647949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Torcular Herophili classification and evaluation of dural venous sinus variations using digital subtraction angiography and magnetic resonance venographies.
    Gökçe E; Pınarbaşılı T; Acu B; Fırat MM; Erkorkmaz Ü
    Surg Radiol Anat; 2014 Aug; 36(6):527-36. PubMed ID: 24154635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2D time-of-flight MR venography in neonates: anatomy and pitfalls.
    Widjaja E; Shroff M; Blaser S; Laughlin S; Raybaud C
    AJNR Am J Neuroradiol; 2006 Oct; 27(9):1913-8. PubMed ID: 17032865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of anatomical asymmetries of transverse sinuses: an MR venographic study.
    Alper F; Kantarci M; Dane S; Gumustekin K; Onbas O; Durur I
    Cerebrovasc Dis; 2004; 18(3):236-9. PubMed ID: 15273441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical study of the confluence of the sinuses with contrast-enhanced magnetic resonance venography.
    Kobayashi K; Matsui O; Suzuki M; Ueda F
    Neuroradiology; 2006 May; 48(5):307-11. PubMed ID: 16575556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Display of dural sinuses with time-resolved, contrast-enhanced three-dimensional MR venography.
    Meckel S; Glücker TM; Kretzschmar M; Scheffler K; Radü EW; Wetzel SG
    Cerebrovasc Dis; 2008; 25(3):217-24. PubMed ID: 18216463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracranial MR venography in children: normal anatomy and variations.
    Widjaja E; Griffiths PD
    AJNR Am J Neuroradiol; 2004 Oct; 25(9):1557-62. PubMed ID: 15502138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in magnetic resonance venographic anatomy of the dorsal dural venous sinus system in 51 dogs.
    Fenn J; Lam R; Kenny PJ
    Vet Radiol Ultrasound; 2013; 54(4):373-380. PubMed ID: 23578353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracranial MR venography using low-field magnet: normal anatomy and variations in Nepalese population.
    Sharma UK; Sharma K
    JNMA J Nepal Med Assoc; 2012; 52(186):61-5. PubMed ID: 23478731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emissary veins prevalence and evaluation of the relationship between dural venous sinus anatomic variations with posterior fossa emissary veins: MR study.
    Gulmez Cakmak P; Ufuk F; Yagci AB; Sagtas E; Arslan M
    Radiol Med; 2019 Jul; 124(7):620-627. PubMed ID: 30825075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral MR venography of transverse sinuses in subjects with normal CSF pressure.
    Bono F; Lupo MR; Lavano A; Mangone L; Fera F; Pardatscher K; Quattrone A
    Neurology; 2003 Nov; 61(9):1267-70. PubMed ID: 14610135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral MR venography: normal anatomy and potential diagnostic pitfalls.
    Ayanzen RH; Bird CR; Keller PJ; McCully FJ; Theobald MR; Heiserman JE
    AJNR Am J Neuroradiol; 2000 Jan; 21(1):74-8. PubMed ID: 10669228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More reliable noninvasive visualization of the cerebral veins and dural sinuses: comparison of three MR angiographic techniques.
    Kirchhof K; Welzel T; Jansen O; Sartor K
    Radiology; 2002 Sep; 224(3):804-10. PubMed ID: 12202718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral MR venography in children: comparison of 2D time-of-flight and gadolinium-enhanced 3D gradient-echo techniques.
    Rollins N; Ison C; Reyes T; Chia J
    Radiology; 2005 Jun; 235(3):1011-7. PubMed ID: 15860678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transverse dural sinuses: incidence of anatomical variants and flow artefacts with 2D time-of-flight MR venography at 1 Tesla.
    Manara R; Mardari R; Ermani M; Severino MS; Santelli L; Carollo C
    Radiol Med; 2010 Mar; 115(2):326-38. PubMed ID: 20058094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of 2D time-of-flight and 3D elliptic centric contrast-enhanced MR venography in patients with presumptive cerebral venous and sinus thrombosis.
    Klingebiel R; Bauknecht HC; Bohner G; Kirsch R; Berger J; Masuhr F
    Eur J Neurol; 2007 Feb; 14(2):139-43. PubMed ID: 17250720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrograde flow in the dural sinuses detected by three-dimensional time-of-flight MR angiography.
    Uchino A; Nomiyama K; Takase Y; Nakazono T; Tominaga Y; Imaizumi T; Kudo S
    Neuroradiology; 2007 Mar; 49(3):211-5. PubMed ID: 17180368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional phase contrast MR cerebral venography with zero filling interpolation in the slice encoding direction.
    Loubeyre P; De Jaegere T; Tran-Minh VA
    Magn Reson Imaging; 1999 Oct; 17(8):1227-33. PubMed ID: 10499685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiologic variations in dural venous sinus flow on phase-contrast MR imaging.
    Mehta NR; Jones L; Kraut MA; Melhem ER
    AJR Am J Roentgenol; 2000 Jul; 175(1):221-5. PubMed ID: 10882276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomical variation of cerebral venous drainage: the theoretical effect on jugular bulb blood samples.
    Beards SC; Yule S; Kassner A; Jackson A
    Anaesthesia; 1998 Jul; 53(7):627-33. PubMed ID: 9771169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.