BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15648002)

  • 1. Strategies for suppressing muscle atrophy in chronic kidney disease: mechanisms activating distinct proteolytic systems.
    Mitch WE; Hu Z; Lee SW; Du J
    J Ren Nutr; 2005 Jan; 15(1):23-7. PubMed ID: 15648002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular signals activating muscle proteolysis in chronic kidney disease: a two-stage process.
    Du J; Hu Z; Mitch WE
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2147-55. PubMed ID: 15982920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteolytic mechanisms, not malnutrition, cause loss of muscle mass in kidney failure.
    Mitch WE
    J Ren Nutr; 2006 Jul; 16(3):208-11. PubMed ID: 16825021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms activating muscle protein degradation in chronic kidney disease and other catabolic conditions.
    Du J; Hu Z; Mitch WE
    Eur J Clin Invest; 2005 Mar; 35(3):157-63. PubMed ID: 15733069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular signaling pathways regulating muscle proteolysis during atrophy.
    Franch HA; Price SR
    Curr Opin Clin Nutr Metab Care; 2005 May; 8(3):271-5. PubMed ID: 15809529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of caspase-3 protects against denervation-induced skeletal muscle atrophy.
    Plant PJ; Bain JR; Correa JE; Woo M; Batt J
    J Appl Physiol (1985); 2009 Jul; 107(1):224-34. PubMed ID: 19390003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ubiquitin-proteasome system and skeletal muscle wasting.
    Attaix D; Ventadour S; Codran A; Béchet D; Taillandier D; Combaret L
    Essays Biochem; 2005; 41():173-86. PubMed ID: 16250905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions.
    Du J; Wang X; Miereles C; Bailey JL; Debigare R; Zheng B; Price SR; Mitch WE
    J Clin Invest; 2004 Jan; 113(1):115-23. PubMed ID: 14702115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase.
    Lee SW; Dai G; Hu Z; Wang X; Du J; Mitch WE
    J Am Soc Nephrol; 2004 Jun; 15(6):1537-45. PubMed ID: 15153564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of pathways controlling muscle protein metabolism in uremia and other catabolic conditions.
    Du J; Mitch WE
    Curr Opin Nephrol Hypertens; 2005 Jul; 14(4):378-82. PubMed ID: 15931008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling.
    Wang X; Hu Z; Hu J; Du J; Mitch WE
    Endocrinology; 2006 Sep; 147(9):4160-8. PubMed ID: 16777975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The role of Foxo1 and ubiquitin-proteasome system markers in muscle atrophy caused by chronic kidney disease].
    Yin J; Huang J; Yuan W; Gu L; Wang L; Shang M
    Zhonghua Nei Ke Za Zhi; 2014 Jan; 53(1):31-4. PubMed ID: 24674725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of muscle wasting associated with chronic kidney disease.
    Workeneh BT; Mitch WE
    Am J Clin Nutr; 2010 Apr; 91(4):1128S-1132S. PubMed ID: 20181807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. XIAP reduces muscle proteolysis induced by CKD.
    Hu J; Du J; Zhang L; Price SR; Klein JD; Wang XH
    J Am Soc Nephrol; 2010 Jul; 21(7):1174-83. PubMed ID: 20431038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1.
    Sacheck JM; Ohtsuka A; McLary SC; Goldberg AL
    Am J Physiol Endocrinol Metab; 2004 Oct; 287(4):E591-601. PubMed ID: 15100091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact.
    Rajan VR; Mitch WE
    Pediatr Nephrol; 2008 Apr; 23(4):527-35. PubMed ID: 17987322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic overexpression of locally acting insulin-like growth factor-1 inhibits ubiquitin-mediated muscle atrophy in chronic left-ventricular dysfunction.
    Schulze PC; Fang J; Kassik KA; Gannon J; Cupesi M; MacGillivray C; Lee RT; Rosenthal N
    Circ Res; 2005 Sep; 97(5):418-26. PubMed ID: 16051886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms activating proteolysis to cause muscle atrophy in catabolic conditions.
    Mitch WE; Price SR
    J Ren Nutr; 2003 Apr; 13(2):149-52. PubMed ID: 12671840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study.
    Yuan L; Han J; Meng Q; Xi Q; Zhuang Q; Jiang Y; Han Y; Zhang B; Fang J; Wu G
    Oncol Rep; 2015 May; 33(5):2261-8. PubMed ID: 25760630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental hyperthyroidism in rats increases the expression of the ubiquitin ligases atrogin-1 and MuRF1 and stimulates multiple proteolytic pathways in skeletal muscle.
    O'Neal P; Alamdari N; Smith I; Poylin V; Menconi M; Hasselgren PO
    J Cell Biochem; 2009 Nov; 108(4):963-73. PubMed ID: 19777444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.