These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15648247)

  • 21. Agglomeration tendency in dry pharmaceutical granular systems.
    Lachiver ED; Abatzoglou N; Cartilier L; Simard JS
    Eur J Pharm Biopharm; 2006 Oct; 64(2):193-9. PubMed ID: 16797949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cohesive-adhesive balances in dry powder inhaler formulations II: influence on fine particle delivery characteristics.
    Begat P; Morton DA; Staniforth JN; Price R
    Pharm Res; 2004 Oct; 21(10):1826-33. PubMed ID: 15553229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of mixing of fine carrier particles on dry powder inhalation property of salbutamol sulfate (SS)].
    Iida K; Leuenberger H; Fueg LM; Müller-Walz R; Okamoto H; Danjo K
    Yakugaku Zasshi; 2000 Jan; 120(1):113-9. PubMed ID: 10655787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of realistic inspiratory flow profiles on fine particle fractions of dry powder aerosol formulations.
    Martin GP; Marriott C; Zeng XM
    Pharm Res; 2007 Feb; 24(2):361-9. PubMed ID: 17177114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards the optimisation and adaptation of dry powder inhalers.
    Cui Y; Schmalfuß S; Zellnitz S; Sommerfeld M; Urbanetz N
    Int J Pharm; 2014 Aug; 470(1-2):120-32. PubMed ID: 24792975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lactose as a carrier in dry powder formulations: the influence of surface characteristics on drug delivery.
    Zeng XM; Martin GP; Marriott C; Pritchard J
    J Pharm Sci; 2001 Sep; 90(9):1424-34. PubMed ID: 11745794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dry powder inhaler device influence on carrier particle performance.
    Donovan MJ; Kim SH; Raman V; Smyth HD
    J Pharm Sci; 2012 Mar; 101(3):1097-107. PubMed ID: 22095397
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Particle design of naproxen-disintegrant agglomerates for direct compression by a crystallo-co-agglomeration technique.
    Maghsoodi M; Taghizadeh O; Martin GP; Nokhodchi A
    Int J Pharm; 2008 Mar; 351(1-2):45-54. PubMed ID: 17980983
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Limitations of high dose carrier based formulations.
    Yeung S; Traini D; Tweedie A; Lewis D; Church T; Young PM
    Int J Pharm; 2018 Jun; 544(1):141-152. PubMed ID: 29649519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhalation performance of pollen-shape carrier in dry powder formulation: effect of size and surface morphology.
    Hassan MS; Lau R
    Int J Pharm; 2011 Jul; 413(1-2):93-102. PubMed ID: 21540087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of Dry Powder Inhaler Carrier Targeted Design: A Comparative Case Study of Diverse Anomeric Compositions and Physical Properties of Lactose.
    Pinto JT; Zellnitz S; Guidi T; Roblegg E; Paudel A
    Mol Pharm; 2018 Jul; 15(7):2827-2839. PubMed ID: 29856921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does carrier size matter? A fundamental study of drug aerosolisation from carrier based dry powder inhalation systems.
    Ooi J; Traini D; Hoe S; Wong W; Young PM
    Int J Pharm; 2011 Jul; 413(1-2):1-9. PubMed ID: 21501674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Particle engineering using sonocrystallization: salbutamol sulphate for pulmonary delivery.
    Dhumal RS; Biradar SV; Paradkar AR; York P
    Int J Pharm; 2009 Feb; 368(1-2):129-37. PubMed ID: 18996462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lactose characteristics and the generation of the aerosol.
    Pilcer G; Wauthoz N; Amighi K
    Adv Drug Deliv Rev; 2012 Mar; 64(3):233-56. PubMed ID: 21616107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force control and powder dispersibility of spray dried particles for inhalation.
    Weiler C; Egen M; Trunk M; Langguth P
    J Pharm Sci; 2010 Jan; 99(1):303-16. PubMed ID: 19533606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a laser diffraction method for the determination of the particle size of aerosolised powder formulations.
    Marriott C; MacRitchie HB; Zeng XM; Martin GP
    Int J Pharm; 2006 Dec; 326(1-2):39-49. PubMed ID: 16942848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigations on the Mechanism of Magnesium Stearate to Modify Aerosol Performance in Dry Powder Inhaled Formulations.
    Jetzer MW; Schneider M; Morrical BD; Imanidis G
    J Pharm Sci; 2018 Apr; 107(4):984-998. PubMed ID: 29247741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving Dry Powder Inhaler Performance by Surface Roughening of Lactose Carrier Particles.
    Tan BM; Chan LW; Heng PW
    Pharm Res; 2016 Aug; 33(8):1923-35. PubMed ID: 27091033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spray-Dried PulmoSphere™ Formulations for Inhalation Comprising Crystalline Drug Particles.
    Weers JG; Miller DP; Tarara TE
    AAPS PharmSciTech; 2019 Feb; 20(3):103. PubMed ID: 30734187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.