These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15648567)

  • 1. Controlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-induced phase-separation method.
    Chun KW; Cho KC; Kim SH; Jeong JH; Park TG
    J Biomater Sci Polym Ed; 2004; 15(11):1341-53. PubMed ID: 15648567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.
    Nam YS; Park TG
    Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.
    Nie H; Wang CH
    J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulation and in vitro transfection efficiency of poly (D, L-lactide-co-glycolide) microspheres containing plasmid DNA for gene delivery.
    Gebrekidan S; Woo BH; DeLuca PP
    AAPS PharmSciTech; 2000 Oct; 1(4):E28. PubMed ID: 14727893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation.
    Nam YS; Park TG
    J Biomed Mater Res; 1999 Oct; 47(1):8-17. PubMed ID: 10400875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method.
    Yoon JJ; Kim JH; Park TG
    Biomaterials; 2003 Jun; 24(13):2323-9. PubMed ID: 12699670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(L-lactide-co-glycolide) nanospheres conjugated with a nuclear localization signal for delivery of plasmid DNA.
    Jeon O; Lim HW; Lee M; Song SJ; Kim BS
    J Drug Target; 2007 Apr; 15(3):190-8. PubMed ID: 17454356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation.
    Rowlands AS; Lim SA; Martin D; Cooper-White JJ
    Biomaterials; 2007 Apr; 28(12):2109-21. PubMed ID: 17258315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering.
    Cao Y; Croll TI; Oconnor AJ; Stevens GW; Cooper-White JJ
    J Biomater Sci Polym Ed; 2006; 17(4):369-402. PubMed ID: 16768291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of a highly macroporous biodegradable composite tissue engineering scaffold.
    Guan L; Davies JE
    J Biomed Mater Res A; 2004 Dec; 71(3):480-7. PubMed ID: 15478140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatility of biodegradable poly(D,L-lactic-co-glycolic acid) microspheres for plasmid DNA delivery.
    Díez S; Tros de Ilarduya C
    Eur J Pharm Biopharm; 2006 Jun; 63(2):188-97. PubMed ID: 16697172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation of plasmid DNA in biodegradable poly(D, L-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery.
    Wang D; Robinson DR; Kwon GS; Samuel J
    J Control Release; 1999 Jan; 57(1):9-18. PubMed ID: 9863034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architecture control of three-dimensional polymeric scaffolds for soft tissue engineering. I. Establishment and validation of numerical models.
    Cao Y; Davidson MR; O'Connor AJ; Stevens GW; Cooper-White JJ
    J Biomed Mater Res A; 2004 Oct; 71(1):81-9. PubMed ID: 15368257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).
    Kempen DH; Lu L; Kim C; Zhu X; Dhert WJ; Currier BL; Yaszemski MJ
    J Biomed Mater Res A; 2006 Apr; 77(1):103-11. PubMed ID: 16392139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High efficient encapsulation of plasmid DNA in PLGA microparticles by organic phase self-emulsification.
    Zhuang FF; Liang R; Zou CT; Ma H; Zheng CX; Duan MX
    J Biochem Biophys Methods; 2002; 52(3):169-78. PubMed ID: 12376020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophilized 3D porous scaffold for effective plasmid DNA delivery.
    Oh SH; Kim TH; Jang SH; Im GI; Lee JH
    J Biomed Mater Res A; 2011 Jun; 97(4):441-50. PubMed ID: 21484988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.