BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 15648813)

  • 1. Computational simulations of airflow in an in vitro model of the pediatric upper airways.
    Allen GM; Shortall BP; Gemci T; Corcoran TE; Chigier NA
    J Biomech Eng; 2004 Oct; 126(5):604-13. PubMed ID: 15648813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale resolving simulations of the effect of glottis motion and the laryngeal jet on flow dynamics during respiration.
    Emmerling J; Vahaji S; Morton DAV; Fletcher DF; Inthavong K
    Comput Methods Programs Biomed; 2024 Apr; 247():108064. PubMed ID: 38382308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of upper airway on tracheobronchial fluid dynamics.
    Kim M; Collier GJ; Wild JM; Chung YM
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3112. PubMed ID: 29856119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human upper-airway respiratory airflow: In vivo comparison of computational fluid dynamics simulations and hyperpolarized 129Xe phase contrast MRI velocimetry.
    Xiao Q; Stewart NJ; Willmering MM; Gunatilaka CC; Thomen RP; Schuh A; Krishnamoorthy G; Wang H; Amin RS; Dumoulin CL; Woods JC; Bates AJ
    PLoS One; 2021; 16(8):e0256460. PubMed ID: 34411195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an effective two-equation turbulence modeling approach for simulating aerosol deposition across a range of turbulence levels.
    Jubaer H; Thomas M; Farkas D; Kolanjiyil AV; Momin MAM; Hindle M; Longest W
    J Aerosol Sci; 2024 Jan; 175():106262. PubMed ID: 38164243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing airflow unsteadiness in the human respiratory tract under different expiration conditions.
    Jing H; Ge H; Tang H; Farnoud A; Saidul Islam M; Wang L; Wang C; Cui X
    J Biomech; 2024 Jan; 162():111910. PubMed ID: 38154261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics.
    Jung EC; Lee GH; Shim EB; Ha H
    Sci Rep; 2023 Sep; 13(1):14638. PubMed ID: 37670027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quasi-realistic computational model development and flow field study of the human upper and central airways.
    Rezazadeh MR; Dastan A; Sadrizadeh S; Abouali O
    Med Biol Eng Comput; 2024 May; ():. PubMed ID: 38758518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reynolds-average Navier-Stokes turbulence models assessment: A case study of CH
    Garcia Lovella Y; Herrera Moya I; Jayasuriya J; Blondeau J
    Heliyon; 2024 Mar; 10(5):e26956. PubMed ID: 38495139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFD simulations of inhalation through a subject-specific human larynx - Impact of the unilateral vocal fold immobility.
    Voss S; Vutlapalli SC; Saalfeld P; Arens C; Janiga G
    Comput Biol Med; 2022 Apr; 143():105243. PubMed ID: 35139455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can IR Images of the Water Surface Be Used to Quantify the Energy Spectrum and the Turbulent Kinetic Energy Dissipation Rate?
    Metoyer SL; Bogucki DJ
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical investigation of the effect of air layer on drag reduction in channel flow over a superhydrophobic surface.
    Nguyen HT; Lee SW; Ryu J; Kim M; Yoon J; Chang K
    Sci Rep; 2024 May; 14(1):12053. PubMed ID: 38802500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structured tree impedance outflow boundary conditions for 3D lung simulations.
    Comerford A; Förster C; Wall WA
    J Biomech Eng; 2010 Aug; 132(8):081002. PubMed ID: 20670051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing the contaminant dispersion and infection risks in the train cabins by adjusting the inlet turbulence intensity: A study based on turbulence simulation.
    Wang T; Zheng Y; Lu Y; Shi F; Ji P; Qian B; Zhang L; Liu D; Wang J; Yang B
    Sci Total Environ; 2024 Jun; 930():172735. PubMed ID: 38663624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of a laboratory-scale turbulent V-flame.
    Bell JB; Day MS; Shepherd IG; Johnson MR; Cheng RK; Grcar JF; Beckner VE; Lijewski MJ
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10006-11. PubMed ID: 16006519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Analysis of the Airflow Field and Experiments of Fiber Motion for Solution Blowing.
    Wu W; Wang D; Zhang Y; Yu L; Han W
    ACS Omega; 2024 Jun; 9(25):26941-26950. PubMed ID: 38947848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biologically generated turbulent energy flux in shear flow depends on tensor geometry.
    Si X; Fang L
    PNAS Nexus; 2024 Feb; 3(2):pgae056. PubMed ID: 38725533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multiscale Approach for the Numerical Simulation of Turbulent Flows with Droplets.
    Gimenez JM; Idelsohn SR; Oñate E; Löhner R
    Arch Comput Methods Eng; 2021; 28(6):4185-4204. PubMed ID: 34220195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of mouth opening on pharyngeal pressure loss and its underlying mechanism: A computational fluid dynamic analysis.
    Hu B; Yin G; Fu S; Zhang B; Shang Y; Zhang Y; Ye J
    Front Bioeng Biotechnol; 2022; 10():1081465. PubMed ID: 36698641
    [No Abstract]   [Full Text] [Related]  

  • 20. Heliox simulations for initial management of congenital laryngotracheal stenosis.
    Del Puppo M; Meister L; Médale M; Allary C; Nicollas R; Moreddu E
    Pediatr Pulmonol; 2023 Jan; 58(1):230-238. PubMed ID: 36208011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.