BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 15648813)

  • 21. Modeling the bifurcating flow in a CT-scanned human lung airway.
    Luo HY; Liu Y
    J Biomech; 2008 Aug; 41(12):2681-8. PubMed ID: 18667205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical study of the impact of glottis properties on the airflow field in the human trachea using V-LES.
    Chen W; Wang L; Chen L; Ge H; Cui X
    Respir Physiol Neurobiol; 2022 Jan; 295():103784. PubMed ID: 34517114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scale resolving simulations of the effect of glottis motion and the laryngeal jet on flow dynamics during respiration.
    Emmerling J; Vahaji S; Morton DAV; Fletcher DF; Inthavong K
    Comput Methods Programs Biomed; 2024 Apr; 247():108064. PubMed ID: 38382308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Numerical simulation on cycle change form of the pressure and wall shear in human upper respiratory tract].
    Li F; Xu X; Sun D; Zhao X; Tan S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):409-14. PubMed ID: 23858771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CFD modeling of turbulent flow and particle deposition in human lungs.
    Radhakrishnan H; Kassinos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2867-70. PubMed ID: 19963784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
    Xi J; Longest PW; Martonen TB
    J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow distribution through human and canine airways during inhalation and exhalation.
    Briant JK; Cohen BS
    J Appl Physiol (1985); 1989 Oct; 67(4):1649-54. PubMed ID: 2793765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of cartilage rings on airflow and particle deposition in the trachea and main bronchi.
    Russo J; Robinson R; Oldham MJ
    Med Eng Phys; 2008 Jun; 30(5):581-9. PubMed ID: 17719260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical study of the airflow structures in an idealized mouth-throat under light and heavy breathing intensities using large eddy simulation.
    Cui X; Wu W; Gutheil E
    Respir Physiol Neurobiol; 2018 Jan; 248():1-9. PubMed ID: 29128524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing Changes in Airflow and Energy Loss in a Progressive Tracheal Compression Before and After Surgical Correction.
    Xiao Q; Cetto R; Doorly DJ; Bates AJ; Rose JN; McIntyre C; Comerford A; Madani G; Tolley NS; Schroter R
    Ann Biomed Eng; 2020 Feb; 48(2):822-833. PubMed ID: 31792705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation.
    Rahimi-Gorji M; Gorji TB; Gorji-Bandpy M
    Comput Biol Med; 2016 Jul; 74():1-17. PubMed ID: 27160637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of upper airway on tracheobronchial fluid dynamics.
    Kim M; Collier GJ; Wild JM; Chung YM
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3112. PubMed ID: 29856119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of airflow field in the upper airway under unsteady respiration pattern using large eddy simulation method.
    Cui X; Wu W; Ge H
    Respir Physiol Neurobiol; 2020 Aug; 279():103468. PubMed ID: 32505518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical Investigation of Flow Characteristics in the Obstructed Realistic Human Upper Airway.
    Liu X; Yan W; Liu Y; Choy YS; Wei Y
    Comput Math Methods Med; 2016; 2016():3181654. PubMed ID: 27725841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of computational fluid dynamics methodology used for human upper airway flow simulations.
    Mylavarapu G; Murugappan S; Mihaescu M; Kalra M; Khosla S; Gutmark E
    J Biomech; 2009 Jul; 42(10):1553-1559. PubMed ID: 19501360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large eddy simulation of the flow pattern in an idealized mouth-throat under unsteady inspiration flow conditions.
    Cui X; Gutheil E
    Respir Physiol Neurobiol; 2018 Jun; 252-253():38-46. PubMed ID: 29518555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A threshold lung volume for optimal mechanical effects on upper airway airflow dynamics: studies in an anesthetized rabbit model.
    Kairaitis K; Verma M; Amatoury J; Wheatley JR; White DP; Amis TC
    J Appl Physiol (1985); 2012 Apr; 112(7):1197-205. PubMed ID: 22241061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CFD analysis of the flow structure in a monkey upper airway validated by PIV experiments.
    Phuong NL; Quang TV; Khoa ND; Kim JW; Ito K
    Respir Physiol Neurobiol; 2020 Jan; 271():103304. PubMed ID: 31546025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
    Naseri A; Shaghaghian S; Abouali O; Ahmadi G
    Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth of nasal and laryngeal airways in children: implications in breathing and inhaled aerosol dynamics.
    Xi J; Si X; Zhou Y; Kim J; Berlinski A
    Respir Care; 2014 Feb; 59(2):263-73. PubMed ID: 23821760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.