These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 15649069)

  • 1. Static and dynamic acute cytotoxicity assays on microfluidic devices.
    Poulsen CR; Culbertson CT; Jacobson SC; Ramsey JM
    Anal Chem; 2005 Jan; 77(2):667-72. PubMed ID: 15649069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange.
    Yamada M; Kobayashi J; Yamato M; Seki M; Okano T
    Lab Chip; 2008 May; 8(5):772-8. PubMed ID: 18432348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicompartmented microfluidic device for characterization of dose-dependent cadmium cytotoxicity in BALB/3T3 fibroblast cells.
    Mahto SK; Yoon TH; Shin H; Rhee SW
    Biomed Microdevices; 2009 Apr; 11(2):401-11. PubMed ID: 18982453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS; Yeon JH; Park JK
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroporation of mammalian cells in a microfluidic channel with geometric variation.
    Wang HY; Lu C
    Anal Chem; 2006 Jul; 78(14):5158-64. PubMed ID: 16841942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity.
    Xing JZ; Zhu L; Gabos S; Xie L
    Toxicol In Vitro; 2006 Sep; 20(6):995-1004. PubMed ID: 16481145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a renal microchip for in vitro distal tubule models.
    Baudoin R; Griscom L; Monge M; Legallais C; Leclerc E
    Biotechnol Prog; 2007; 23(5):1245-53. PubMed ID: 17725364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical microfluidic biosensor for the detection of nucleic acid sequences.
    Goral VN; Zaytseva NV; Baeumner AJ
    Lab Chip; 2006 Mar; 6(3):414-21. PubMed ID: 16511625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic devices for the high-throughput chemical analysis of cells.
    McClain MA; Culbertson CT; Jacobson SC; Allbritton NL; Sims CE; Ramsey JM
    Anal Chem; 2003 Nov; 75(21):5646-55. PubMed ID: 14588001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic delivery of small molecules into mammalian cells based on hydrodynamic focusing.
    Wang F; Wang H; Wang J; Wang HY; Rummel PL; Garimella SV; Lu C
    Biotechnol Bioeng; 2008 May; 100(1):150-8. PubMed ID: 18078299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of mitochondrial membrane potential in the cells by microchip flow cytometry.
    Kataoka M; Fukura Y; Shinohara Y; Baba Y
    Electrophoresis; 2005 Aug; 26(15):3025-31. PubMed ID: 16078196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow.
    El-Ali J; Gaudet S; Günther A; Sorger PK; Jensen KF
    Anal Chem; 2005 Jun; 77(11):3629-36. PubMed ID: 15924398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital microfluidics for cell-based assays.
    Barbulovic-Nad I; Yang H; Park PS; Wheeler AR
    Lab Chip; 2008 Apr; 8(4):519-26. PubMed ID: 18369505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the toxicity of Triton X-100 to protozoan, fish, and mammalian cells using fluorescent dyes as indicators of cell viability.
    Dayeh VR; Chow SL; Schirmer K; Lynn DH; Bols NC
    Ecotoxicol Environ Saf; 2004 Mar; 57(3):375-82. PubMed ID: 15041260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbioassay system for antiallergic drug screening using suspension cells retaining in a poly(dimethylsiloxane) microfluidic device.
    Tokuyama T; Fujii S; Sato K; Abo M; Okubo A
    Anal Chem; 2005 May; 77(10):3309-14. PubMed ID: 15889923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices.
    Sung JH; Choi JR; Kim D; Shuler ML
    Biotechnol Bioeng; 2009 Oct; 104(3):516-25. PubMed ID: 19575443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-talk problem on a fluorescence multi-channel microfluidic chip system.
    Irawan R; Tjin SC; Yager P; Zhang D
    Biomed Microdevices; 2005 Sep; 7(3):205-11. PubMed ID: 16133808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed, whole-column fluorescence imaging detection for isoelectric focusing on a microchip using an organic light emitting diode as light source.
    Yao B; Yang H; Liang Q; Luo G; Wang L; Ren K; Gao Y; Wang Y; Qiu Y
    Anal Chem; 2006 Aug; 78(16):5845-50. PubMed ID: 16906731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action.
    Knauer K; Lampert C; Gonzalez-Valero J
    Chemosphere; 2007 Jul; 68(8):1435-41. PubMed ID: 17512969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.