These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 15649388)
21. Design, synthesis, structural and functional characterization of novel melanocortin agonists based on the cyclotide kalata B1. Eliasen R; Daly NL; Wulff BS; Andresen TL; Conde-Frieboes KW; Craik DJ J Biol Chem; 2012 Nov; 287(48):40493-501. PubMed ID: 23012369 [TBL] [Abstract][Full Text] [Related]
22. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Gehman JD; Luc F; Hall K; Lee TH; Boland MP; Pukala TL; Bowie JH; Aguilar MI; Separovic F Biochemistry; 2008 Aug; 47(33):8557-65. PubMed ID: 18652483 [TBL] [Abstract][Full Text] [Related]
23. Complex formation of amphotericin B in sterol-containing membranes as evidenced by surface plasmon resonance. Mouri R; Konoki K; Matsumori N; Oishi T; Murata M Biochemistry; 2008 Jul; 47(30):7807-15. PubMed ID: 18597487 [TBL] [Abstract][Full Text] [Related]
24. Binding assays with artificial tethered membranes using surface plasmon resonance. Wiltschi B; Knoll W; Sinner EK Methods; 2006 Jun; 39(2):134-46. PubMed ID: 16857384 [TBL] [Abstract][Full Text] [Related]
25. The self-association of the cyclotide kalata B2 in solution is guided by hydrophobic interactions. Rosengren KJ; Daly NL; Harvey PJ; Craik DJ Biopolymers; 2013 Sep; 100(5):453-60. PubMed ID: 23893463 [TBL] [Abstract][Full Text] [Related]
26. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail). Plan MR; Saska I; Cagauan AG; Craik DJ J Agric Food Chem; 2008 Jul; 56(13):5237-41. PubMed ID: 18557620 [TBL] [Abstract][Full Text] [Related]
27. Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions. Mozsolits H; Aguilar MI Biopolymers; 2002; 66(1):3-18. PubMed ID: 12228917 [TBL] [Abstract][Full Text] [Related]
28. Interaction of arginine oligomer with model membrane. Yi D; Guoming L; Gao L; Wei L Biochem Biophys Res Commun; 2007 Aug; 359(4):1024-9. PubMed ID: 17572387 [TBL] [Abstract][Full Text] [Related]
29. Probing the mechanism of drug/lipid membrane interactions using Biacore. Abdiche YN; Myszka DG Anal Biochem; 2004 May; 328(2):233-43. PubMed ID: 15113702 [TBL] [Abstract][Full Text] [Related]
30. Cyclotide-membrane interactions: defining factors of membrane binding, depletion and disruption. Burman R; Strömstedt AA; Malmsten M; Göransson U Biochim Biophys Acta; 2011 Nov; 1808(11):2665-73. PubMed ID: 21787745 [TBL] [Abstract][Full Text] [Related]
31. Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specific interactions. Wang CK; Wacklin HP; Craik DJ J Biol Chem; 2012 Dec; 287(52):43884-98. PubMed ID: 23129773 [TBL] [Abstract][Full Text] [Related]
32. Surface plasmon resonance in protein-membrane interactions. Besenicar M; Macek P; Lakey JH; Anderluh G Chem Phys Lipids; 2006 Jun; 141(1-2):169-78. PubMed ID: 16584720 [TBL] [Abstract][Full Text] [Related]
33. Sterol effect on interaction between amphidinol 3 and liposomal membrane as evidenced by surface plasmon resonance. Swasono RT; Mouri R; Morsy N; Matsumori N; Oishi T; Murata M Bioorg Med Chem Lett; 2010 Apr; 20(7):2215-8. PubMed ID: 20207137 [TBL] [Abstract][Full Text] [Related]
34. Specific membrane binding of the carboxypeptidase Y inhibitor I(C), a phosphatidylethanolamine-binding protein family member. Mima J; Fukada H; Nagayama M; Ueda M FEBS J; 2006 Dec; 273(23):5374-83. PubMed ID: 17076703 [TBL] [Abstract][Full Text] [Related]
35. Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions. Henriques ST; Huang YH; Castanho MA; Bagatolli LA; Sonza S; Tachedjian G; Daly NL; Craik DJ J Biol Chem; 2012 Sep; 287(40):33629-43. PubMed ID: 22854971 [TBL] [Abstract][Full Text] [Related]
36. Surface plasmon resonance spectroscopy in the study of membrane-mediated cell signalling. Mozsolits H; Thomas WG; Aguilar MI J Pept Sci; 2003 Feb; 9(2):77-89. PubMed ID: 12630693 [TBL] [Abstract][Full Text] [Related]
37. Investigation of interaction of Leu-enkephalin with lipid membranes. Liu S; Shibata A; Ueno S; Xu F; Baba Y; Jiang D; Li Y Colloids Surf B Biointerfaces; 2006 Mar; 48(2):148-58. PubMed ID: 16542826 [TBL] [Abstract][Full Text] [Related]
38. Capped acyclic permutants of the circular protein kalata B1. Simonsen SM; Daly NL; Craik DJ FEBS Lett; 2004 Nov; 577(3):399-402. PubMed ID: 15556617 [TBL] [Abstract][Full Text] [Related]
39. Membrane binding of beta2-glycoprotein I can be described by a two-state reaction model: an atomic force microscopy and surface plasmon resonance study. Gamsjaeger R; Johs A; Gries A; Gruber HJ; Romanin C; Prassl R; Hinterdorfer P Biochem J; 2005 Aug; 389(Pt 3):665-73. PubMed ID: 15813706 [TBL] [Abstract][Full Text] [Related]
40. Anthelmintic activity of cyclotides: In vitro studies with canine and human hookworms. Colgrave ML; Kotze AC; Kopp S; McCarthy JS; Coleman GT; Craik DJ Acta Trop; 2009 Feb; 109(2):163-6. PubMed ID: 19059189 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]