BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 15649487)

  • 1. High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex.
    Zhang X; Dong F; Ren J; Driscoll MJ; Culver B
    Exp Neurol; 2005 Feb; 191(2):318-25. PubMed ID: 15649487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dietary salt on intrarenal angiotensin system, NAD(P)H oxidase, COX-2, MCP-1 and PAI-1 expressions and NF-kappaB activity in salt-sensitive and -resistant rat kidneys.
    Chandramohan G; Bai Y; Norris K; Rodriguez-Iturbe B; Vaziri ND
    Am J Nephrol; 2008; 28(1):158-67. PubMed ID: 17951998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons: role of neuronal NADPH oxidase.
    Park KW; Jin BK
    J Neurosci Res; 2008 Apr; 86(5):1053-63. PubMed ID: 18183616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms.
    Barbieri SS; Cavalca V; Eligini S; Brambilla M; Caiani A; Tremoli E; Colli S
    Free Radic Biol Med; 2004 Jul; 37(2):156-65. PubMed ID: 15203187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of NADPH oxidase-related oxidative stress-triggered signaling by honokiol suppresses high glucose-induced human endothelial cell apoptosis.
    Sheu ML; Chiang CK; Tsai KS; Ho FM; Weng TI; Wu HY; Liu SH
    Free Radic Biol Med; 2008 Jun; 44(12):2043-50. PubMed ID: 18423412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prothrombin kringle-2-induced oxidative stress contributes to the death of cortical neurons in vivo and in vitro: role of microglial NADPH oxidase.
    Won SY; Choi SH; Jin BK
    J Neuroimmunol; 2009 Sep; 214(1-2):83-92. PubMed ID: 19660816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of high-fat diet feeding on hypothalamic redox signaling and central blood pressure regulation.
    Erdos B; Broxson CS; Cudykier I; Basgut B; Whidden M; Landa T; Scarpace PJ; Tümer N
    Hypertens Res; 2009 Nov; 32(11):983-8. PubMed ID: 19713964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II type 1 receptor-dependent nuclear factor-kappaB activation-mediated proinflammatory actions in a rat model of obstructive acute pancreatitis.
    Chan YC; Leung PS
    J Pharmacol Exp Ther; 2007 Oct; 323(1):10-8. PubMed ID: 17616560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of nuclear factor-kappaB signaling pathway by interleukin-1 after hypoxia/ischemia in neonatal rat hippocampus and cortex.
    Hu X; Nesic-Taylor O; Qiu J; Rea HC; Fabian R; Rassin DK; Perez-Polo JR
    J Neurochem; 2005 Apr; 93(1):26-37. PubMed ID: 15773902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of COX-2/PGE(2)/IL-6 is crucial for cigarette smoke extract-induced airway inflammation: Role of TLR4-dependent NADPH oxidase activation.
    Lin CC; Lee IT; Yang YL; Lee CW; Kou YR; Yang CM
    Free Radic Biol Med; 2010 Jan; 48(2):240-54. PubMed ID: 19892012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose.
    Tsai KH; Wang WJ; Lin CW; Pai P; Lai TY; Tsai CY; Kuo WW
    J Cell Physiol; 2012 Apr; 227(4):1347-57. PubMed ID: 21604272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase.
    Dechend R; Viedt C; Müller DN; Ugele B; Brandes RP; Wallukat G; Park JK; Janke J; Barta P; Theuer J; Fiebeler A; Homuth V; Dietz R; Haller H; Kreuzer J; Luft FC
    Circulation; 2003 Apr; 107(12):1632-9. PubMed ID: 12668498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension.
    Nagae A; Fujita M; Kawarazaki H; Matsui H; Ando K; Fujita T
    Circulation; 2009 Feb; 119(7):978-86. PubMed ID: 19204299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH oxidase and cyclooxygenase mediate the ultraviolet B-induced generation of reactive oxygen species and activation of nuclear factor-kappaB in HaCaT human keratinocytes.
    Beak SM; Lee YS; Kim JA
    Biochimie; 2004 Jul; 86(7):425-9. PubMed ID: 15308331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanide-induced apoptosis involves oxidative-stress-activated NF-kappaB in cortical neurons.
    Shou Y; Gunasekar PG; Borowitz JL; Isom GE
    Toxicol Appl Pharmacol; 2000 Apr; 164(2):196-205. PubMed ID: 10764633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of endothelial cells after exposure to ambient ultrafine particles: the role of NADPH oxidase.
    Mo Y; Wan R; Chien S; Tollerud DJ; Zhang Q
    Toxicol Appl Pharmacol; 2009 Apr; 236(2):183-93. PubMed ID: 19371610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidase mediates interleukin-6 expression in cerulein-stimulated pancreatic acinar cells.
    Yu JH; Lim JW; Kim H; Kim KH
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1458-69. PubMed ID: 15833277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra-renal angiotensin II/AT1 receptor, oxidative stress, inflammation, and progressive injury in renal mass reduction.
    Vaziri ND; Bai Y; Ni Z; Quiroz Y; Pandian R; Rodriguez-Iturbe B
    J Pharmacol Exp Ther; 2007 Oct; 323(1):85-93. PubMed ID: 17636006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase.
    Talior I; Tennenbaum T; Kuroki T; Eldar-Finkelman H
    Am J Physiol Endocrinol Metab; 2005 Feb; 288(2):E405-11. PubMed ID: 15507533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benazepril, an angiotensin-converting enzyme inhibitor, alleviates renal injury in spontaneously hypertensive rats by inhibiting advanced glycation end-product-mediated pathways.
    Liu XP; Pang YJ; Zhu WW; Zhao TT; Zheng M; Wang YB; Sun ZJ; Sun SJ
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):287-96. PubMed ID: 19018797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.