BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 15649635)

  • 1. Prolonged focal application of polyethylene glycol induces conduction block in guinea pig spinal cord white matter.
    Cole A; Shi R
    Toxicol In Vitro; 2005 Mar; 19(2):215-20. PubMed ID: 15649635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute repair of crushed guinea pig spinal cord by polyethylene glycol.
    Shi R; Borgens RB
    J Neurophysiol; 1999 May; 81(5):2406-14. PubMed ID: 10322076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol.
    Borgens RB; Bohnert D
    J Neurosci Res; 2001 Dec; 66(6):1179-86. PubMed ID: 11746451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of polyethylene glycol and magnesium sulfate administration on clinically relevant neurological outcomes after spinal cord injury in the rat.
    Ditor DS; John SM; Roy J; Marx JC; Kittmer C; Weaver LC
    J Neurosci Res; 2007 May; 85(7):1458-67. PubMed ID: 17410603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4-Aminopyridine derivatives enhance impulse conduction in guinea-pig spinal cord following traumatic injury.
    McBride JM; Smith DT; Byrn SR; Borgens RB; Shi R
    Neuroscience; 2007 Aug; 148(1):44-52. PubMed ID: 17629412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter.
    Sun W; Smith D; Fu Y; Cheng JX; Bryn S; Borgens R; Shi R
    J Neurophysiol; 2010 Jan; 103(1):469-78. PubMed ID: 19923250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury.
    Baptiste DC; Austin JW; Zhao W; Nahirny A; Sugita S; Fehlings MG
    J Neuropathol Exp Neurol; 2009 Jun; 68(6):661-76. PubMed ID: 19458542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional silica nanoparticle-mediated neuronal membrane sealing following traumatic spinal cord injury.
    Cho Y; Shi R; Ivanisevic A; Borgens RB
    J Neurosci Res; 2010 May; 88(7):1433-44. PubMed ID: 19998478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The peroxynitrite donor 3-morpholinosydnonimine induces reversible changes in electrophysiological properties of neurons of the guinea-pig spinal cord.
    Ashki N; Hayes KC; Bao F
    Neuroscience; 2008 Sep; 156(1):107-17. PubMed ID: 18662749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of polyethylene glycol on mammalian nerve impulses.
    Benzon HT; Gissen AJ; Strichartz GR; Avram MJ; Covino BG
    Anesth Analg; 1987 Jun; 66(6):553-9. PubMed ID: 3578866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyethylene glycol inhibits apoptotic cell death following traumatic spinal cord injury.
    Luo J; Shi R
    Brain Res; 2007 Jun; 1155():10-6. PubMed ID: 17512912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol.
    Borgens RB; Shi R; Bohnert D
    J Exp Biol; 2002 Jan; 205(Pt 1):1-12. PubMed ID: 11818407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcutaneous tri-block copolymer produces recovery from spinal cord injury.
    Borgens RB; Bohnert D; Duerstock B; Spomar D; Lee RC
    J Neurosci Res; 2004 Apr; 76(1):141-54. PubMed ID: 15048938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol.
    Shi R; Borgens RB
    J Neurocytol; 2000 Sep; 29(9):633-43. PubMed ID: 11353287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusive oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol.
    Luo J; Shi R
    Neurosci Lett; 2004 Apr; 359(3):167-70. PubMed ID: 15050690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional reconnection of severed mammalian spinal cord axons with polyethylene glycol.
    Shi R; Borgens RB; Blight AR
    J Neurotrauma; 1999 Aug; 16(8):727-38. PubMed ID: 10511246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycol.
    Borgens RB; Shi R
    FASEB J; 2000 Jan; 14(1):27-35. PubMed ID: 10627277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conduction deficits and membrane disruption of spinal cord axons as a function of magnitude and rate of strain.
    Shi R; Whitebone J
    J Neurophysiol; 2006 Jun; 95(6):3384-90. PubMed ID: 16510778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conduction block in acute and chronic spinal cord injury: different dose-response characteristics for reversal by 4-aminopyridine.
    Shi R; Kelly TM; Blight AR
    Exp Neurol; 1997 Dec; 148(2):495-501. PubMed ID: 9417828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compression of rat spinal cord in vitro: effects of ethanol on recovery of axonal conduction.
    Ridella SA; Anderson TE
    Cent Nerv Syst Trauma; 1986; 3(3):195-205. PubMed ID: 3802222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.