BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15649745)

  • 1. Backbone-only restraints for fast determination of the protein fold: the role of paramagnetism-based restraints. Cytochrome b562 as an example.
    Banci L; Bertini I; Felli IC; Sarrou J
    J Magn Reson; 2005 Feb; 172(2):191-200. PubMed ID: 15649745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein.
    Mueller GA; Choy WY; Yang D; Forman-Kay JD; Venters RA; Kay LE
    J Mol Biol; 2000 Jun; 300(1):197-212. PubMed ID: 10864509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The solution structure of oxidized Escherichia coli cytochrome b562.
    Arnesano F; Banci L; Bertini I; Faraone-Mennella J; Rosato A; Barker PD; Fersht AR
    Biochemistry; 1999 Jul; 38(27):8657-70. PubMed ID: 10393541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The auto-orientation in high magnetic fields of oxidized cytochrome b562 as source of constraints for solution structure determination.
    Arnesano F; Banci L; Bertini I; Van Der Wetering K; Czisch M; Kaptein R
    J Biomol NMR; 2000 Aug; 17(4):295-304. PubMed ID: 11014593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paramagnetism-based refinement strategy for the solution structure of human alpha-parvalbumin.
    Baig I; Bertini I; Del Bianco C; Gupta YK; Lee YM; Luchinat C; Quattrone A
    Biochemistry; 2004 May; 43(18):5562-73. PubMed ID: 15122922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projection angle restraints for studying structure and dynamics of biomolecules.
    Griesinger C; Peti W; Meiler J; Brüschweiler R
    Methods Mol Biol; 2004; 278():107-21. PubMed ID: 15317994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of the phosphorylated active site loop of the cytoplasmic B domain of the mannitol transporter II(Mannitol) of the Escherichia coli phosphotransferase system by NMR spectroscopy and residual dipolar couplings.
    Suh JY; Tang C; Cai M; Clore GM
    J Mol Biol; 2005 Nov; 353(5):1129-36. PubMed ID: 16219324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backbone-only protein solution structures with a combination of classical and paramagnetism-based constraints: a method that can be scaled to large molecules.
    Barbieri R; Luchinat C; Parigi G
    Chemphyschem; 2004 Jun; 5(6):797-806. PubMed ID: 15253307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis.
    Castellani F; van Rossum BJ; Diehl A; Rehbein K; Oschkinat H
    Biochemistry; 2003 Oct; 42(39):11476-83. PubMed ID: 14516199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of heme on the structure of the denatured state and folding kinetics of cytochrome b562.
    Garcia P; Bruix M; Rico M; Ciofi-Baffoni S; Banci L; Ramachandra Shastry MC; Roder H; de Lumley Woodyear T; Johnson CM; Fersht AR; Barker PD
    J Mol Biol; 2005 Feb; 346(1):331-44. PubMed ID: 15663948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo determination of protein structure by NMR using orientational and long-range order restraints.
    Hus JC; Marion D; Blackledge M
    J Mol Biol; 2000 May; 298(5):927-36. PubMed ID: 10801359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two simple NMR experiments for measuring dipolar couplings in asparagine and glutamine side chains.
    Permi P
    J Magn Reson; 2001 Dec; 153(2):267-72. PubMed ID: 11740905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The magnetic properties of myoglobin as studied by NMR spectroscopy.
    Bertini I; Luchinat C; Turano P; Battaini G; Casella L
    Chemistry; 2003 May; 9(10):2316-22. PubMed ID: 12772306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular-orientation analysis based on alignment-induced TROSY chemical shift changes.
    Tate S; Shimahara H; Utsunomiya-Tate N
    J Magn Reson; 2004 Dec; 171(2):284-92. PubMed ID: 15546755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Order matrix analysis of residual dipolar couplings using singular value decomposition.
    Losonczi JA; Andrec M; Fischer MW; Prestegard JH
    J Magn Reson; 1999 Jun; 138(2):334-42. PubMed ID: 10341140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings--an assessment of the interrelation of NMR restraints.
    Jensen PR; Axelsen JB; Lerche MH; Poulsen FM
    J Biomol NMR; 2004 Jan; 28(1):31-41. PubMed ID: 14739637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural consequences of b- to c-type heme conversion in oxidized Escherichia coli cytochrome b562.
    Arnesano F; Banci L; Bertini I; Ciofi-Baffoni S; Woodyear TL; Johnson CM; Barker PD
    Biochemistry; 2000 Feb; 39(6):1499-514. PubMed ID: 10684632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fumarate sensor DcuS: progress in rapid protein fold elucidation by combining protein structure prediction methods with NMR spectroscopy.
    Meiler J; Baker D
    J Magn Reson; 2005 Apr; 173(2):310-6. PubMed ID: 15780923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CABS-NMR--De novo tool for rapid global fold determination from chemical shifts, residual dipolar couplings and sparse methyl-methyl NOEs.
    Latek D; Kolinski A
    J Comput Chem; 2011 Feb; 32(3):536-44. PubMed ID: 20806263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.