BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 15649986)

  • 1. Interactions between long latency afferent inhibition and interhemispheric inhibitions in the human motor cortex.
    Kukaswadia S; Wagle-Shukla A; Morgante F; Gunraj C; Chen R
    J Physiol; 2005 Mar; 563(Pt 3):915-24. PubMed ID: 15649986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of inhibitory and facilitatory intracortical circuits on interhemispheric inhibition in the human motor cortex.
    Lee H; Gunraj C; Chen R
    J Physiol; 2007 May; 580(Pt.3):1021-32. PubMed ID: 17303638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short and long latency afferent inhibition in Parkinson's disease.
    Sailer A; Molnar GF; Paradiso G; Gunraj CA; Lang AE; Chen R
    Brain; 2003 Aug; 126(Pt 8):1883-94. PubMed ID: 12805105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex.
    Chen R; Yung D; Li JY
    J Neurophysiol; 2003 Mar; 89(3):1256-64. PubMed ID: 12611955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory afferent inhibition within and between limbs in humans.
    Bikmullina R; Bäumer T; Zittel S; Münchau A
    Clin Neurophysiol; 2009 Mar; 120(3):610-8. PubMed ID: 19136299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired presynaptic inhibition in the motor cortex in Parkinson disease.
    Chu J; Wagle-Shukla A; Gunraj C; Lang AE; Chen R
    Neurology; 2009 Mar; 72(9):842-9. PubMed ID: 19255412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms underlying long-interval cortical inhibition in the human motor cortex: a TMS-EEG study.
    Rogasch NC; Daskalakis ZJ; Fitzgerald PB
    J Neurophysiol; 2013 Jan; 109(1):89-98. PubMed ID: 23100139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the connectivity between the cerebellum and motor cortex in humans.
    Daskalakis ZJ; Paradiso GO; Christensen BK; Fitzgerald PB; Gunraj C; Chen R
    J Physiol; 2004 Jun; 557(Pt 2):689-700. PubMed ID: 15047772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Afferent-induced facilitation of primary motor cortex excitability in the region controlling hand muscles in humans.
    Devanne H; Degardin A; Tyvaert L; Bocquillon P; Houdayer E; Manceaux A; Derambure P; Cassim F
    Eur J Neurosci; 2009 Aug; 30(3):439-48. PubMed ID: 19686433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition.
    Di Lazzaro V; Pilato F; Dileone M; Tonali PA; Ziemann U
    J Physiol; 2005 Nov; 569(Pt 1):315-23. PubMed ID: 16141274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.
    Ferreri F; Ponzo D; Hukkanen T; Mervaala E; Könönen M; Pasqualetti P; Vecchio F; Rossini PM; Määttä S
    J Neurophysiol; 2012 Jul; 108(1):314-23. PubMed ID: 22457460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human.
    Ni Z; Gunraj C; Nelson AJ; Yeh IJ; Castillo G; Hoque T; Chen R
    Cereb Cortex; 2009 Jul; 19(7):1654-65. PubMed ID: 19015374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans.
    Quartarone A; Rizzo V; Bagnato S; Morgante F; Sant'Angelo A; Girlanda P; Siebner HR
    J Physiol; 2006 Sep; 575(Pt 2):657-70. PubMed ID: 16825301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-latency afferent inhibition during selective finger movement.
    Voller B; St Clair Gibson A; Lomarev M; Kanchana S; Dambrosia J; Dang N; Hallett M
    J Neurophysiol; 2005 Aug; 94(2):1115-9. PubMed ID: 15843479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deficit of sensorimotor integration in normal aging.
    Degardin A; Devos D; Cassim F; Bourriez JL; Defebvre L; Derambure P; Devanne H
    Neurosci Lett; 2011 Jul; 498(3):208-12. PubMed ID: 21600958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of trains of high-frequency stimulation of the premotor/supplementary motor area on conditioned corticomotor responses in hemicerebellectomized rats.
    Oulad Ben Taib N; Manto M
    Exp Neurol; 2008 Jul; 212(1):157-65. PubMed ID: 18482725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between short latency afferent inhibition and long interval intracortical inhibition.
    Udupa K; Ni Z; Gunraj C; Chen R
    Exp Brain Res; 2009 Nov; 199(2):177-83. PubMed ID: 19730839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unilateral grip fatigue reduces short interval intracortical inhibition in ipsilateral primary motor cortex.
    Takahashi K; Maruyama A; Maeda M; Etoh S; Hirakoba K; Kawahira K; Rothwell JC
    Clin Neurophysiol; 2009 Jan; 120(1):198-203. PubMed ID: 19028439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
    Swayne O; Rothwell J; Rosenkranz K
    Clin Neurophysiol; 2006 Apr; 117(4):855-63. PubMed ID: 16448846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of continuous theta burst stimulation over premotor cortex on circuits in primary motor cortex and spinal cord.
    Huang YZ; Rothwell JC; Lu CS; Wang J; Weng YH; Lai SC; Chuang WL; Hung J; Chen RS
    Clin Neurophysiol; 2009 Apr; 120(4):796-801. PubMed ID: 19231274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.