BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 15650190)

  • 1. Computational design of antiviral RNA interference strategies that resist human immunodeficiency virus escape.
    Leonard JN; Schaffer DV
    J Virol; 2005 Feb; 79(3):1645-54. PubMed ID: 15650190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of HIV-1 replication by RNA interference.
    Lee NS; Rossi JJ
    Virus Res; 2004 Jun; 102(1):53-8. PubMed ID: 15068880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing of HIV-1 with RNA interference: a multiple shRNA approach.
    ter Brake O; Konstantinova P; Ceylan M; Berkhout B
    Mol Ther; 2006 Dec; 14(6):883-92. PubMed ID: 16959541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIV-1-specific RNA interference.
    Boden D; Pusch O; Ramratnam B
    Curr Opin Mol Ther; 2004 Aug; 6(4):373-80. PubMed ID: 15468596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNAi in combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapy.
    Li M; Li H; Rossi JJ
    Ann N Y Acad Sci; 2006 Oct; 1082():172-9. PubMed ID: 17145937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA interference and HIV-1 infection.
    Kanzaki LI; Ornelas SS; Argañaraz ER
    Rev Med Virol; 2008; 18(1):5-18. PubMed ID: 17764099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small interfering RNAs against the TAR RNA binding protein, TRBP, a Dicer cofactor, inhibit human immunodeficiency virus type 1 long terminal repeat expression and viral production.
    Christensen HS; Daher A; Soye KJ; Frankel LB; Alexander MR; Lainé S; Bannwarth S; Ong CL; Chung SW; Campbell SM; Purcell DF; Gatignol A
    J Virol; 2007 May; 81(10):5121-31. PubMed ID: 17360756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [RNA interference and its application in inhibiting HIV-1 infection].
    Wei L; Liu X; Cao C
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):516-9. PubMed ID: 16176084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2(-/-)gammac(-/-)) mouse model.
    ter Brake O; Legrand N; von Eije KJ; Centlivre M; Spits H; Weijer K; Blom B; Berkhout B
    Gene Ther; 2009 Jan; 16(1):148-53. PubMed ID: 18668146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a durable treatment of HIV-1 infection using RNA interference.
    Eekels JJ; Berkhout B
    Prog Mol Biol Transl Sci; 2011; 102():141-63. PubMed ID: 21846571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antitat gene therapy: a candidate for late-stage AIDS patients.
    Lisziewicz J; Sun D; Lisziewicz A; Gallo RC
    Gene Ther; 1995 May; 2(3):218-22. PubMed ID: 7614253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High level inhibition of HIV replication with combination RNA decoys expressed from an HIV-Tat inducible vector.
    Fraisier C; Irvine A; Wrighton C; Craig R; Dzierzak E
    Gene Ther; 1998 Dec; 5(12):1665-76. PubMed ID: 10023446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The therapeutic potential of RNA interference in controlling HIV-1 replication.
    Soejitno A; Wihandani DM; Kuswardhani T
    Acta Med Indones; 2009 Oct; 41(4):215-21. PubMed ID: 20124619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The future of HIV infection: gene therapy and RNA interference.
    Delgado R; Regueiro BJ
    Enferm Infecc Microbiol Clin; 2005 Jul; 23 Suppl 2():68-83. PubMed ID: 16373006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific HIV-1 env gene silencing by small interfering RNAs in human peripheral blood mononuclear cells.
    Park WS; Hayafune M; Miyano-Kurosaki N; Takaku H
    Gene Ther; 2003 Nov; 10(24):2046-50. PubMed ID: 14566364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stringent testing identifies highly potent and escape-proof anti-HIV short hairpin RNAs.
    von Eije KJ; ter Brake O; Berkhout B
    J Gene Med; 2009 Jun; 11(6):459-67. PubMed ID: 19384894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective inhibition of hepatitis B virus replication by small interfering RNAs expressed from human foamy virus vectors.
    Sun Y; Li Z; Li L; Li J; Liu X; Li W
    Int J Mol Med; 2007 Apr; 19(4):705-11. PubMed ID: 17334648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1.
    Chang LJ; Liu X; He J
    Gene Ther; 2005 Jul; 12(14):1133-44. PubMed ID: 15750613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
    DeVincenzo JP
    Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome.
    Westerhout EM; Ooms M; Vink M; Das AT; Berkhout B
    Nucleic Acids Res; 2005; 33(2):796-804. PubMed ID: 15687388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.