These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 15650403)

  • 1. Redox regulation of histone deacetylases and glucocorticoid-mediated inhibition of the inflammatory response.
    Adcock IM; Cosio B; Tsaprouni L; Barnes PJ; Ito K
    Antioxid Redox Signal; 2005; 7(1-2):144-52. PubMed ID: 15650403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress and redox regulation of lung inflammation in COPD.
    Rahman I; Adcock IM
    Eur Respir J; 2006 Jul; 28(1):219-42. PubMed ID: 16816350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation.
    Rahman I; Gilmour PS; Jimenez LA; MacNee W
    Mol Cell Biochem; 2002; 234-235(1-2):239-48. PubMed ID: 12162440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression.
    Rahman I; Marwick J; Kirkham P
    Biochem Pharmacol; 2004 Sep; 68(6):1255-67. PubMed ID: 15313424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD.
    Rajendrasozhan S; Yang SR; Edirisinghe I; Yao H; Adenuga D; Rahman I
    Antioxid Redox Signal; 2008 Apr; 10(4):799-811. PubMed ID: 18220485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs.
    Marwick JA; Kirkham PA; Stevenson CS; Danahay H; Giddings J; Butler K; Donaldson K; Macnee W; Rahman I
    Am J Respir Cell Mol Biol; 2004 Dec; 31(6):633-42. PubMed ID: 15333327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucocorticoids: effects on gene transcription.
    Adcock IM; Ito K; Barnes PJ
    Proc Am Thorac Soc; 2004; 1(3):247-54. PubMed ID: 16113442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression.
    Ito K; Yamamura S; Essilfie-Quaye S; Cosio B; Ito M; Barnes PJ; Adcock IM
    J Exp Med; 2006 Jan; 203(1):7-13. PubMed ID: 16380507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. p65-activated histone acetyltransferase activity is repressed by glucocorticoids: mifepristone fails to recruit HDAC2 to the p65-HAT complex.
    Ito K; Jazrawi E; Cosio B; Barnes PJ; Adcock IM
    J Biol Chem; 2001 Aug; 276(32):30208-15. PubMed ID: 11395507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucocorticoid-regulated transcription factors.
    Adcock IM
    Pulm Pharmacol Ther; 2001; 14(3):211-9. PubMed ID: 11448148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells.
    Moodie FM; Marwick JA; Anderson CS; Szulakowski P; Biswas SK; Bauter MR; Kilty I; Rahman I
    FASEB J; 2004 Dec; 18(15):1897-9. PubMed ID: 15456740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter.
    Astrand C; Belikov S; Wrange O
    Exp Cell Res; 2009 Sep; 315(15):2604-15. PubMed ID: 19463811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of glucocorticoids on gene transcription.
    Hayashi R; Wada H; Ito K; Adcock IM
    Eur J Pharmacol; 2004 Oct; 500(1-3):51-62. PubMed ID: 15464020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticosteroids: the drugs to beat.
    Barnes PJ
    Eur J Pharmacol; 2006 Mar; 533(1-3):2-14. PubMed ID: 16436275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucocorticoid pathways in chronic obstructive pulmonary disease therapy.
    Adcock IM; Ito K
    Proc Am Thorac Soc; 2005; 2(4):313-9; discussion 340-1. PubMed ID: 16267355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucocorticoid suppression of nuclear factor-kappa B: a role for histone modifications.
    Kagoshima M; Ito K; Cosio B; Adcock IM
    Biochem Soc Trans; 2003 Feb; 31(Pt 1):60-5. PubMed ID: 12546654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of post-translational modifications of proteins on the inflammatory process.
    Ito K
    Biochem Soc Trans; 2007 Apr; 35(Pt 2):281-3. PubMed ID: 17371260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease.
    Szulakowski P; Crowther AJ; Jiménez LA; Donaldson K; Mayer R; Leonard TB; MacNee W; Drost EM
    Am J Respir Crit Care Med; 2006 Jul; 174(1):41-50. PubMed ID: 16574938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone deacetylation: an important mechanism in inflammatory lung diseases.
    Adcock IM; Ito K; Barnes PJ
    COPD; 2005 Dec; 2(4):445-55. PubMed ID: 17147010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of protein acetylation in inflammatory lung diseases.
    Ito K; Charron CE; Adcock IM
    Pharmacol Ther; 2007 Nov; 116(2):249-65. PubMed ID: 17720252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.