BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 15651032)

  • 1. Continuous medium theory for nonequilibrium solvation: III. Solvation shift by monopole approximation and multipole expansion in spherical cavity.
    Zhu Q; Fu KX; Li XY; Gong Z; Ma JY
    J Comput Chem; 2005 Mar; 26(4):399-409. PubMed ID: 15651032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous medium theory for nonequilibrium solvation: II. Interaction energy between solute charge and reaction field and single-sphere model for spectral shift.
    Li XY; Fu KX; Zhu Q; Shan MH
    J Comput Chem; 2004 Apr; 25(6):835-42. PubMed ID: 15011255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous medium theory for nonequilibrium solvation: I. How to correctly evaluate solvation free energy of nonequilibrium.
    Li XY; Fu KX
    J Comput Chem; 2004 Mar; 25(4):500-9. PubMed ID: 14735569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous medium theory for nonequilibrium solvation: IV. Solvent reorganization energy of electron transfer based on conductor-like screening model.
    Fu KX; Zhu Q; Li XY; Gong Z; Ma JY; He RX
    J Comput Chem; 2006 Feb; 27(3):368-74. PubMed ID: 16380944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral shift of the n → π* transition for acetone and formic acid with an explicit solvent model.
    Li YK; Zhu Q; Li XY; Fu KX; Wang XJ; Cheng XM
    J Phys Chem A; 2011 Jan; 115(3):232-43. PubMed ID: 21174450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonequilibrium solvation energy by means of constrained equilibrium thermodynamics and its application to self-exchange electron transfer reactions.
    Li XY; Wang QD; Wang JB; Ma JY; Fu KX; He FC
    Phys Chem Chem Phys; 2010 Feb; 12(6):1341-50. PubMed ID: 20119612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic free energy and its variations in implicit solvent models.
    Che J; Dzubiella J; Li B; McCammon JA
    J Phys Chem B; 2008 Mar; 112(10):3058-69. PubMed ID: 18275182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation dynamics of Hoechst 33258 in water: an equilibrium and nonequilibrium molecular dynamics study.
    Furse KE; Lindquist BA; Corcelli SA
    J Phys Chem B; 2008 Mar; 112(10):3231-9. PubMed ID: 18271577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical detachment energy of hydrated electron based on a modified form of solvent reorganization energy.
    Wang XJ; Zhu Q; Li YK; Cheng XM; Li XY; Fu KX; He FC
    J Phys Chem B; 2010 Feb; 114(6):2189-97. PubMed ID: 20095542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvation of a spherical cavity in simple liquids: interpolating between the limits.
    Wu J
    J Phys Chem B; 2009 May; 113(19):6813-8. PubMed ID: 19378961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free energy of solvation from molecular dynamics simulation applying Voronoi-Delaunay triangulation to the cavity creation.
    Goncalves PF; Stassen H
    J Chem Phys; 2005 Dec; 123(21):214109. PubMed ID: 16356041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on orientation and absorption spectrum of interfacial molecules by using continuum model.
    Ma JY; Wang JB; Li XY; Huang Y; Zhu Q; Fu KX
    J Comput Chem; 2008 Jan; 29(2):198-210. PubMed ID: 17557282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvation dynamics in acetonitrile: a study incorporating solute electronic response and nuclear relaxation.
    Ingrosso F; Ladanyi BM; Mennucci B; Elola MD; Tomasi J
    J Phys Chem B; 2005 Mar; 109(8):3553-64. PubMed ID: 16851393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of solvation in polar nematics.
    Kapko V; Matyushov DV
    J Chem Phys; 2006 Mar; 124(11):114904. PubMed ID: 16555918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation of coumarin 153 in supercritical fluoroform.
    Ingrosso F; Ladanyi BM; Mennucci B; Scalmani G
    J Phys Chem B; 2006 Mar; 110(10):4953-62. PubMed ID: 16526736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-consistent reaction field model of solvation using distributed multipoles. I. Energy and energy derivatives.
    Rinaldi D; Bouchy A; Rivail JL; Dillet V
    J Chem Phys; 2004 Feb; 120(5):2343-50. PubMed ID: 15268373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a two-length-scale field theory to the solvation of neutral and charged molecules.
    Sitnikov G; Taran M; Muryshev A; Nechaev S
    J Chem Phys; 2006 Mar; 124(9):94501. PubMed ID: 16526861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvation dynamics in supercritical fluids: equilibrium versus nonequilibrium solvent response functions.
    Egorov SA
    J Chem Phys; 2004 Oct; 121(14):6948-55. PubMed ID: 15473754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An explicit quantum chemical method for modeling large solvation shells applied to aminocoumarin C151.
    Neugebauer J; Jacob CR; Wesolowski TA; Baerends EJ
    J Phys Chem A; 2005 Sep; 109(34):7805-14. PubMed ID: 16834158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.