These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 15651509)
61. Dynamic ventilatory characteristics during weaning in postoperative critically ill patients. Rivera L; Weissman C Anesth Analg; 1997 Jun; 84(6):1250-5. PubMed ID: 9174302 [TBL] [Abstract][Full Text] [Related]
62. The Comparison of Pressure (PSV) and Volume Support Ventilation (VSV) as a 'Weaning' Mode. Sancar NK; Özcan PE; Şentürk E; Selek Ç; Çakar N Turk J Anaesthesiol Reanim; 2014 Aug; 42(4):170-5. PubMed ID: 27366416 [TBL] [Abstract][Full Text] [Related]
63. Spontaneous breathing and total body oxygen consumption in children recovering from open-heart surgery. Räsänen J; Puhakka K; Leijala M Chest; 1992 Mar; 101(3):662-7. PubMed ID: 1541129 [TBL] [Abstract][Full Text] [Related]
64. Biphasic positive airway pressure ventilation (PeV+) in children. Jaarsma AS; Knoester H; van Rooyen F; Bos AP Crit Care; 2001; 5(3):174-7. PubMed ID: 11353935 [TBL] [Abstract][Full Text] [Related]
65. Influence of ventilatory strategies on outcomes and length of hospital stay: assist-control and synchronized intermittent mandatory ventilation modes. de Godoi TB; Marson FAL; Palamim CVC; Cannonieri-Nonose GC Intern Emerg Med; 2021 Mar; 16(2):409-418. PubMed ID: 32681412 [TBL] [Abstract][Full Text] [Related]
66. Energy metabolism of thoracic surgical patients in the early postoperative period. Effect of posture. Brandi LS; Bertolini R; Janni A; Gioia A; Angeletti CA Chest; 1996 Mar; 109(3):630-7. PubMed ID: 8617069 [TBL] [Abstract][Full Text] [Related]
67. Metabolic and respiratory changes during weaning from mechanical ventilation. Kemper M; Weissman C; Askanazi J; Hyman AI; Kinney JM Chest; 1987 Dec; 92(6):979-83. PubMed ID: 3119297 [TBL] [Abstract][Full Text] [Related]
68. [Increase in partial arterial carbon dioxide pressure due to parenteral nutrition during artificial ventilation]. Trunet P; Dreyfuss D; Bonnet JL; Teisseire B; Becker J; Rapin M Presse Med; 1983 Dec; 12(46):2927-30. PubMed ID: 6228874 [TBL] [Abstract][Full Text] [Related]
69. Extubation criteria after weaning from intermittent mandatory ventilation and continuous positive airway pressure. Tahvanainen J; Salmenperä M; Nikki P Crit Care Med; 1983 Sep; 11(9):702-7. PubMed ID: 6411431 [TBL] [Abstract][Full Text] [Related]
70. Comparison of Energy Expenditure and Oxygen Consumption of Spontaneous Breathing Trial Conducted With and Without Automatic Tube Compensation. Lago AF; Goncalves EC; Silva EC; Menegueti MG; Nicolini EA; Auxiliadora-Martins M; Martinez EZ; Gastaldi AC; Basile-Filho A J Clin Med Res; 2015 Sep; 7(9):700-5. PubMed ID: 26251685 [TBL] [Abstract][Full Text] [Related]
71. Does early use of bilevel positive airway pressure (bipap) in cardiothoracic intensive care unit prevent reintubation? Sağıroğlu G; Baysal A; Copuroğlu E; Gül Y; Karamustafaoğlu Y; Dogukan M Int J Clin Exp Med; 2014; 7(10):3439-46. PubMed ID: 25419380 [TBL] [Abstract][Full Text] [Related]
72. Prophylactic use of non-invasive mechanical ventilation in lung resection. Guerra Hernández E; Rodríguez Pérez A; Freixinet Gilard J; Martín Álamo MN; Escudero Socorro M; Rodríguez Suárez P; Esquinas AM Eur Rev Med Pharmacol Sci; 2018 Jan; 22(1):190-198. PubMed ID: 29364487 [TBL] [Abstract][Full Text] [Related]
73. Postoperative intermittent positive pressure breathing versus physiotherapy. Schuppisser JP; Brändli O; Meili U Am J Surg; 1980 Nov; 140(5):682-6. PubMed ID: 6776833 [TBL] [Abstract][Full Text] [Related]
74. Can selection of mechanical ventilation mode prevent increased intra-abdominal pressure in patients admitted to the intensive care unit? Rafiei MR; Aghadavoudi O; Shekarchi B; Sajjadi SS; Masoudifar M Int J Prev Med; 2013 May; 4(5):552-6. PubMed ID: 23930166 [TBL] [Abstract][Full Text] [Related]
75. Volume-controlled high frequency positive pressure ventilation for upper abdominal surgery. A clinical report. Babinski MF; Smith RB; Sjöstrand UH Anaesthesia; 1985 Jul; 40(7):619-23. PubMed ID: 3927765 [TBL] [Abstract][Full Text] [Related]
76. Bilevel Positive Airway Pressure ventilation efficiently improves respiratory distress in initial hours treating children with severe asthma exacerbation. Kang CM; Wu ET; Wang CC; Lu F; Chiang BL; Yen TA J Formos Med Assoc; 2020 Sep; 119(9):1415-1421. PubMed ID: 31806384 [TBL] [Abstract][Full Text] [Related]
77. Application of positive airway pressure in restoring pulmonary function and thoracic mobility in the postoperative period of bariatric surgery: a randomized clinical trial. Brigatto P; Carbinatto JC; Costa CM; Montebelo MI; Rasera-Júnior I; Pazzianotto-Forti EM Braz J Phys Ther; 2014; 18(6):553-62. PubMed ID: 25590448 [TBL] [Abstract][Full Text] [Related]
78. Noninvasive Mechanical Ventilation with Average Volume-Assured Pressure Support versus BiPAP S/T in De Novo Hypoxemic Respiratory Failure. Briones-Claudett KH; Briones-Claudett MH; Baños MDPC; Briones Zamora KH; Briones Marquez DC; Zimmermann LJI; Gavilanes AWD; Grunauer M Crit Care Res Pract; 2022; 2022():4333345. PubMed ID: 35966802 [TBL] [Abstract][Full Text] [Related]
79. [BiPAP--new progress in the field of ventilators. Bilevel positive airway pressure]. Mihălţan F Pneumoftiziologia; 1993; 42(4):39-44. PubMed ID: 7950451 [No Abstract] [Full Text] [Related]
80. Automatic detection of CO Szkulmowski Z; Robert D; Karłowska-Pik J; Argaud L Sci Rep; 2024 Aug; 14(1):19066. PubMed ID: 39154044 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]