These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 15651565)

  • 1. Encoding frequency modulation to improve cochlear implant performance in noise.
    Nie K; Stickney G; Zeng FG
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):64-73. PubMed ID: 15651565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on the effect of spectral details encoding in speech processing on Mandarin recognition for cochlear implants users with speech maskers].
    Guan T; Xu T; Ye D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):435-8. PubMed ID: 18610637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel speech-processing strategy incorporating tonal information for cochlear implants.
    Lan N; Nie KB; Gao SK; Zeng FG
    IEEE Trans Biomed Eng; 2004 May; 51(5):752-60. PubMed ID: 15132501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral and temporal cues in cochlear implant speech perception.
    Nie K; Barco A; Zeng FG
    Ear Hear; 2006 Apr; 27(2):208-17. PubMed ID: 16518146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Speech coding strategy based on amplitude and frequency modulation for cochlear implants].
    Lin H; Wang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):228-32. PubMed ID: 21604474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cochlear implant processing and fundamental frequency on the intelligibility of competing sentences.
    Stickney GS; Assmann PF; Chang J; Zeng FG
    J Acoust Soc Am; 2007 Aug; 122(2):1069-78. PubMed ID: 17672654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-power asynchronous interleaved sampling algorithm for cochlear implants that encodes envelope and phase information.
    Sit JJ; Simonson AM; Oxenham AJ; Faltys MA; Sarpeshkar R
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):138-49. PubMed ID: 17260865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On normalized MSE analysis of speech fundamental frequency in the cochlear implant-like spectrally reduced speech.
    Do CT; Pastor D; Goalic A
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):572-7. PubMed ID: 19744908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1-year postactivation results for sequentially implanted bilateral cochlear implant users.
    Wolfe J; Baker S; Caraway T; Kasulis H; Mears A; Smith J; Swim L; Wood M
    Otol Neurotol; 2007 Aug; 28(5):589-96. PubMed ID: 17667768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speaker normalization for chinese vowel recognition in cochlear implants.
    Luo X; Fu QJ
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1358-61. PubMed ID: 16042003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unintelligible low-frequency sound enhances simulated cochlear-implant speech recognition in noise.
    Chang JE; Bai JY; Zeng FG
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 2):2598-601. PubMed ID: 17152439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of subjects fit with the Advanced Bionics CII and Nucleus 3G cochlear implant devices.
    Spahr AJ; Dorman MF
    Arch Otolaryngol Head Neck Surg; 2004 May; 130(5):624-8. PubMed ID: 15148187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining directional microphone and single-channel noise reduction algorithms: a clinical evaluation in difficult listening conditions with cochlear implant users.
    Hersbach AA; Arora K; Mauger SJ; Dawson PW
    Ear Hear; 2012; 33(4):e13-23. PubMed ID: 22555182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of vowel recognition with cochlear implant simulations.
    Liu C; Fu QJ
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):74-81. PubMed ID: 17260858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech perception in individuals with auditory neuropathy.
    Zeng FG; Liu S
    J Speech Lang Hear Res; 2006 Apr; 49(2):367-80. PubMed ID: 16671850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Companding to improve cochlear-implant speech recognition in speech-shaped noise.
    Bhattacharya A; Zeng FG
    J Acoust Soc Am; 2007 Aug; 122(2):1079-89. PubMed ID: 17672655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New cochlear implant coding strategy for tonal language speakers.
    Wong LL; Vandali AE; Ciocca V; Luk B; Ip VW; Murray B; Yu HC; Chung I
    Int J Audiol; 2008 Jun; 47(6):337-47. PubMed ID: 18569106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants.
    Grantham DW; Ashmead DH; Ricketts TA; Labadie RF; Haynes DS
    Ear Hear; 2007 Aug; 28(4):524-41. PubMed ID: 17609614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The benefits of remote microphone technology for adults with cochlear implants.
    Fitzpatrick EM; Séguin C; Schramm DR; Armstrong S; Chénier J
    Ear Hear; 2009 Oct; 30(5):590-9. PubMed ID: 19561509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Across-frequency delays based on the cochlear traveling wave: enhanced speech presentation for cochlear implants.
    Taft DA; Grayden DB; Burkitt AN
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):596-606. PubMed ID: 19846368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.