These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Complexity results for autocatalytic network models. Weller-Davies O; Steel M; Hein J Math Biosci; 2020 Jul; 325():108365. PubMed ID: 32360772 [TBL] [Abstract][Full Text] [Related]
5. Predicting template-based catalysis rates in a simple catalytic reaction model. Hordijk W; Steel M J Theor Biol; 2012 Feb; 295():132-8. PubMed ID: 22142623 [TBL] [Abstract][Full Text] [Related]
6. Emergence of symbiosis in peptide self-replication through a hypercyclic network. Lee DH; Severin K; Yokobayashi Y; Ghadiri MR Nature; 1997 Dec; 390(6660):591-4. PubMed ID: 9403686 [TBL] [Abstract][Full Text] [Related]
7. Universal motifs and the diversity of autocatalytic systems. Blokhuis A; Lacoste D; Nghe P Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25230-25236. PubMed ID: 32989134 [TBL] [Abstract][Full Text] [Related]
8. The Expected Number of Viable Autocatalytic Sets in Chemical Reaction Systems. Kauffman S; Steel M Artif Life; 2021 Mar; 27(1):1-14. PubMed ID: 34529753 [TBL] [Abstract][Full Text] [Related]
9. Required levels of catalysis for emergence of autocatalytic sets in models of chemical reaction systems. Hordijk W; Kauffman SA; Steel M Int J Mol Sci; 2011; 12(5):3085-101. PubMed ID: 21686171 [TBL] [Abstract][Full Text] [Related]
10. Emergence of homochirality in far-from-equilibrium systems: mechanisms and role in prebiotic chemistry. Plasson R; Kondepudi DK; Bersini H; Commeyras A; Asakura K Chirality; 2007 Aug; 19(8):589-600. PubMed ID: 17559107 [TBL] [Abstract][Full Text] [Related]
11. Autocatalysis: at the root of self-replication. Plasson R; Brandenburg A; Jullien L; Bersini H Artif Life; 2011; 17(3):219-36. PubMed ID: 21554116 [TBL] [Abstract][Full Text] [Related]
12. The hierarchical organization of autocatalytic reaction networks and its relevance to the origin of life. Peng Z; Linderoth J; Baum DA PLoS Comput Biol; 2022 Sep; 18(9):e1010498. PubMed ID: 36084149 [TBL] [Abstract][Full Text] [Related]
13. A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. Slepoy A; Thompson AP; Plimpton SJ J Chem Phys; 2008 May; 128(20):205101. PubMed ID: 18513044 [TBL] [Abstract][Full Text] [Related]
14. Symmetry and order in systems chemistry. Wagner N; Ashkenasy G J Chem Phys; 2009 Apr; 130(16):164907. PubMed ID: 19405630 [TBL] [Abstract][Full Text] [Related]
15. Autocatalytic networks in biology: structural theory and algorithms. Steel M; Hordijk W; Xavier JC J R Soc Interface; 2019 Feb; 16(151):20180808. PubMed ID: 30958202 [TBL] [Abstract][Full Text] [Related]
16. Control of Boolean networks: hardness results and algorithms for tree structured networks. Akutsu T; Hayashida M; Ching WK; Ng MK J Theor Biol; 2007 Feb; 244(4):670-9. PubMed ID: 17069859 [TBL] [Abstract][Full Text] [Related]
17. Systems biology and the origins of life? Part I. Are biochemical networks possible ancestors of living systems? Reproduction, identity and sensitivity to signals of biochemical networks. Ricard J C R Biol; 2010; 333(11-12):761-8. PubMed ID: 21146131 [TBL] [Abstract][Full Text] [Related]
18. A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox. Vellela M; Qian H Bull Math Biol; 2007 Jul; 69(5):1727-46. PubMed ID: 17318672 [TBL] [Abstract][Full Text] [Related]
19. Autocatalytic sets and biological specificity. Hordijk W; Wills PR; Steel M Bull Math Biol; 2014 Jan; 76(1):201-24. PubMed ID: 24233808 [TBL] [Abstract][Full Text] [Related]
20. Autocatalytic sets in a partitioned biochemical network. Smith JI; Steel M; Hordijk W J Syst Chem; 2014; 5(1):2. PubMed ID: 24883116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]