These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 15652144)
1. On the validity of the quasi-steady state approximation of bimolecular reactions in solution. Tzafriri AR; Edelman ER J Theor Biol; 2005 Apr; 233(3):343-50. PubMed ID: 15652144 [TBL] [Abstract][Full Text] [Related]
2. Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant. Rami Tzafriri A; Edelman ER J Theor Biol; 2007 Apr; 245(4):737-48. PubMed ID: 17234216 [TBL] [Abstract][Full Text] [Related]
3. Extension and Justification of Quasi-Steady-State Approximation for Reversible Bimolecular Binding. Kollár R; Šišková K Bull Math Biol; 2015 Jul; 77(7):1401-36. PubMed ID: 26223735 [TBL] [Abstract][Full Text] [Related]
4. Experimental verification of the Smoluchowski theory for a bimolecular diffusion-controlled reaction in liquid phase. Arita T; Kajimoto O; Terazima M; Kimura Y J Chem Phys; 2004 Apr; 120(15):7071-4. PubMed ID: 15267610 [TBL] [Abstract][Full Text] [Related]
5. The total quasi-steady-state approximation for fully competitive enzyme reactions. Pedersena MG; Bersani AM; Bersani E Bull Math Biol; 2007 Jan; 69(1):433-57. PubMed ID: 16850351 [TBL] [Abstract][Full Text] [Related]
6. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. Macnamara S; Bersani AM; Burrage K; Sidje RB J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893 [TBL] [Abstract][Full Text] [Related]
7. Quasi-steady-state laws in enzyme kinetics. Li B; Shen Y; Li B J Phys Chem A; 2008 Mar; 112(11):2311-21. PubMed ID: 18303867 [TBL] [Abstract][Full Text] [Related]
8. Enzyme kinetics at high enzyme concentration. Schnell S; Maini PK Bull Math Biol; 2000 May; 62(3):483-99. PubMed ID: 10812718 [TBL] [Abstract][Full Text] [Related]
10. Influence of diffusion on the kinetics of excited-state association--dissociation reactions: comparison of theory and simulation. Popov AV; Agmon N; Gopich IV; Szabo A J Chem Phys; 2004 Apr; 120(13):6111-6. PubMed ID: 15267495 [TBL] [Abstract][Full Text] [Related]
11. Two classes of quasi-steady-state model reductions for stochastic kinetics. Mastny EA; Haseltine EL; Rawlings JB J Chem Phys; 2007 Sep; 127(9):094106. PubMed ID: 17824731 [TBL] [Abstract][Full Text] [Related]
12. Michaelis-Menten kinetics at high enzyme concentrations. Tzafriri AR Bull Math Biol; 2003 Nov; 65(6):1111-29. PubMed ID: 14607291 [TBL] [Abstract][Full Text] [Related]
13. Metal speciation dynamics in soft colloidal ligand suspensions. Electrostatic and site distribution aspects. Duval JF J Phys Chem A; 2009 Mar; 113(11):2275-93. PubMed ID: 19281140 [TBL] [Abstract][Full Text] [Related]
14. Validity of quasi-steady-state and transfer-function representations for input-output relation in a Michaelis-Menten reaction. Sakamoto N Biotechnol Bioeng; 1986 Aug; 28(8):1191-9. PubMed ID: 18555445 [TBL] [Abstract][Full Text] [Related]
15. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. Ciliberto A; Capuani F; Tyson JJ PLoS Comput Biol; 2007 Mar; 3(3):e45. PubMed ID: 17367203 [TBL] [Abstract][Full Text] [Related]
16. Metal speciation dynamics in monodisperse soft colloidal ligand suspensions. Duval JF; Pinheiro JP; van Leeuwen HP J Phys Chem A; 2008 Aug; 112(31):7137-51. PubMed ID: 18636700 [TBL] [Abstract][Full Text] [Related]
17. Theory and simulation of diffusion-controlled Michaelis-Menten kinetics for a static enzyme in solution. Park S; Agmon N J Phys Chem B; 2008 May; 112(19):5977-87. PubMed ID: 18220382 [TBL] [Abstract][Full Text] [Related]
18. A steady state mathematical model for stepwise "slow-binding" reversible enzyme inhibition. Kuzmic P Anal Biochem; 2008 Sep; 380(1):5-12. PubMed ID: 18206642 [TBL] [Abstract][Full Text] [Related]
19. Computing steady-state metal flux at microorganism and bioanalogical sensor interfaces in multiligand systems. A reaction layer approximation and its comparison with the rigorous solution. Buffle J; Startchev K; Galceran J Phys Chem Chem Phys; 2007 Jun; 9(22):2844-55. PubMed ID: 17538729 [TBL] [Abstract][Full Text] [Related]
20. A rigorous foundation of the diffusion-influenced bimolecular reaction kinetics. Kim JH; Lee S J Chem Phys; 2009 Jul; 131(1):014503. PubMed ID: 19586106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]