BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 15652145)

  • 1. Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins.
    Ratkowsky DA; Olley J; Ross T
    J Theor Biol; 2005 Apr; 233(3):351-62. PubMed ID: 15652145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration.
    Makhatadze GI; Privalov PL
    J Mol Biol; 1993 Jul; 232(2):639-59. PubMed ID: 8393940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric kinetics of protein structural changes.
    Marchal S; Font J; Ribó M; Vilanova M; Phillips RS; Lange R; Torrent J
    Acc Chem Res; 2009 Jun; 42(6):778-87. PubMed ID: 19378977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experiment-guided thermodynamic simulations on reversible two-state proteins: implications for protein thermostability.
    Kumar S; Nussinov R
    Biophys Chem; 2004 Nov; 111(3):235-46. PubMed ID: 15501567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid substitutions affecting protein dynamics in eglin C do not affect heat capacity change upon unfolding.
    Gribenko AV; Keiffer TR; Makhatadze GI
    Proteins; 2006 Aug; 64(2):295-300. PubMed ID: 16705642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenomenological similarities between protein denaturation and small-molecule dissolution: Insights into the mechanism driving the thermal resistance of globular proteins.
    Ragone R
    Proteins; 2004 Feb; 54(2):323-32. PubMed ID: 14696194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability, heat stability and heat sensitivity of proteins: thermodynamic considerations.
    Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1985; 20(3-4):183-6. PubMed ID: 3837978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic basis for the stabilities of three CutA1s from Pyrococcus horikoshii,Thermus thermophilus, and Oryza sativa, with unusually high denaturation temperatures.
    Sawano M; Yamamoto H; Ogasahara K; Kidokoro S; Katoh S; Ohnuma T; Katoh E; Yokoyama S; Yutani K
    Biochemistry; 2008 Jan; 47(2):721-30. PubMed ID: 18154307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics and mechanism of cutinase stabilization by trehalose.
    Baptista RP; Pedersen S; Cabrita GJ; Otzen DE; Cabral JM; Melo EP
    Biopolymers; 2008 Jun; 89(6):538-47. PubMed ID: 18213692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates.
    Pietikäinen J; Pettersson M; Bååth E
    FEMS Microbiol Ecol; 2005 Mar; 52(1):49-58. PubMed ID: 16329892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of irreversible thermal protein denaturation at varying temperature. II. The complete kinetic model of Lumry and Eyring.
    Lyubarev AE; Kurganov BI
    Biochemistry (Mosc); 1999 Jul; 64(7):832-8. PubMed ID: 10424909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive analysis of protein folding activation thermodynamics reveals a universal behavior violated by kinetically stable proteases.
    Jaswal SS; Truhlar SM; Dill KA; Agard DA
    J Mol Biol; 2005 Mar; 347(2):355-66. PubMed ID: 15740746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enthalpic and entropic contributions mediate the role of disulfide bonds on the conformational stability of interleukin-4.
    Vaz DC; Rodrigues JR; Sebald W; Dobson CM; Brito RM
    Protein Sci; 2006 Jan; 15(1):33-44. PubMed ID: 16373475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Denaturation increment of heat capacity in diluted aqueous solutions of collagen].
    Mrevlishvili GM; Metreveli NO; Mdzinarashvili TD
    Biofizika; 1997; 42(1):78-81. PubMed ID: 9181805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamical properties of reaction intermediates during apoplastocyanin folding in time domain.
    Baden N; Hirota S; Takabe T; Funasaki N; Terazima M
    J Chem Phys; 2007 Nov; 127(17):175103. PubMed ID: 17994853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rates of unfolding, rather than refolding, determine thermal stabilities of thermophilic, mesophilic, and psychrotrophic 3-isopropylmalate dehydrogenases.
    Gráczer E; Varga A; Hajdú I; Melnik B; Szilágyi A; Semisotnov G; Závodszky P; Vas M
    Biochemistry; 2007 Oct; 46(41):11536-49. PubMed ID: 17887729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature effects on the nucleation mechanism of protein folding and on the barrierless thermal denaturation of a native protein.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6281-300. PubMed ID: 18936853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic differences among homologous thermophilic and mesophilic proteins.
    Kumar S; Tsai CJ; Nussinov R
    Biochemistry; 2001 Nov; 40(47):14152-65. PubMed ID: 11714268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of folding and DNA-binding in the bZIP domains of Jun-Fos heterodimeric transcription factor.
    Seldeen KL; McDonald CB; Deegan BJ; Farooq A
    Arch Biochem Biophys; 2008 May; 473(1):48-60. PubMed ID: 18316037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.