These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 15652538)

  • 1. The role of passive structures in force enhancement of skeletal muscles following active stretch.
    Herzog W; Leonard TR
    J Biomech; 2005 Mar; 38(3):409-15. PubMed ID: 15652538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of muscle stretching and shortening on isometric forces on the descending limb of the force-length relationship.
    Schachar R; Herzog W; Leonard TR
    J Biomech; 2004 Jun; 37(6):917-26. PubMed ID: 15111079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of passive force in single skeletal muscle fibres.
    Rassier DE; Lee EJ; Herzog W
    Biol Lett; 2005 Sep; 1(3):342-5. PubMed ID: 17148202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. History-dependence of isometric muscle force: effect of prior stretch or shortening amplitude.
    Bullimore SR; Leonard TR; Rassier DE; Herzog W
    J Biomech; 2007; 40(7):1518-24. PubMed ID: 16919641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force enhancement in single skeletal muscle fibres on the ascending limb of the force-length relationship.
    Peterson DR; Rassier DE; Herzog W
    J Exp Biol; 2004 Jul; 207(Pt 16):2787-91. PubMed ID: 15235007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into the passive force enhancement in skeletal muscles.
    Lee EJ; Joumaa V; Herzog W
    J Biomech; 2007; 40(4):719-27. PubMed ID: 17097664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force enhancement above the initial isometric force on the descending limb of the force-length relationship.
    Schachar R; Herzog W; Leonard TR
    J Biomech; 2002 Oct; 35(10):1299-306. PubMed ID: 12231275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical work as predictor of force enhancement and force depression.
    Kosterina N; Westerblad H; Eriksson A
    J Biomech; 2009 Aug; 42(11):1628-34. PubMed ID: 19486981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of shortening on stretch-induced force enhancement in single skeletal muscle fibers.
    Rassier DE; Herzog W
    J Biomech; 2004 Sep; 37(9):1305-12. PubMed ID: 15275837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging affects passive stiffness and spindle function of the rat soleus muscle.
    Rosant C; Nagel MD; PĂ©rot C
    Exp Gerontol; 2007 Apr; 42(4):301-8. PubMed ID: 17118602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of twitch force by stretch in a nerve-skeletal muscle preparation of the frog Rana porosa brevipoda and the effects of temperature on it.
    Ishii Y; Watari T; Tsuchiya T
    J Exp Biol; 2004 Dec; 207(Pt 26):4505-13. PubMed ID: 15579546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation-induced force enhancement in human adductor pollicis.
    Oskouei AE; Herzog W
    J Electromyogr Kinesiol; 2009 Oct; 19(5):821-8. PubMed ID: 18430589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of force development by skeletal muscles during and after stretch.
    Rassier DE
    Mol Cell Biomech; 2009 Dec; 6(4):229-41. PubMed ID: 19899446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does residual force enhancement increase with increasing stretch magnitudes?
    Hisey B; Leonard TR; Herzog W
    J Biomech; 2009 Jul; 42(10):1488-1492. PubMed ID: 19442977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extra force from asynchronous stimulation of cat soleus muscle results from minimizing the stretch of the common elastic elements.
    Sandercock TG
    J Neurophysiol; 2006 Sep; 96(3):1401-5. PubMed ID: 16790590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. History dependence of skeletal muscle force production: implications for movement control.
    Herzog W
    Hum Mov Sci; 2004 Nov; 23(5):591-604. PubMed ID: 15589623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is a parallel elastic element responsible for the enhancement of steady-state muscle force following active stretch?
    Bullimore SR; MacIntosh BR; Herzog W
    J Exp Biol; 2008 Sep; 211(Pt 18):3001-8. PubMed ID: 18775937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual force enhancement exceeds the isometric force at optimal sarcomere length for optimized stretch conditions.
    Lee EJ; Herzog W
    J Appl Physiol (1985); 2008 Aug; 105(2):457-62. PubMed ID: 18499781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length.
    Rassier DE; Herzog W; Wakeling J; Syme DA
    J Biomech; 2003 Sep; 36(9):1309-16. PubMed ID: 12893039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does the speed of shortening affect steady-state force depression in cat soleus muscle?
    Leonard TR; Herzog W
    J Biomech; 2005 Nov; 38(11):2190-7. PubMed ID: 16154405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.