BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 15652549)

  • 21. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2008 Dec; 130(6):061009. PubMed ID: 19045538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unconfined creep compression of chondrocytes.
    Leipzig ND; Athanasiou KA
    J Biomech; 2005 Jan; 38(1):77-85. PubMed ID: 15519342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aging-related differences in chondrocyte viscoelastic properties.
    Steklov N; Srivastava A; Sung KL; Chen PC; Lotz MK; D'Lima DD
    Mol Cell Biomech; 2009 Jun; 6(2):113-9. PubMed ID: 19496259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix.
    Alexopoulos LG; Youn I; Bonaldo P; Guilak F
    Arthritis Rheum; 2009 Mar; 60(3):771-9. PubMed ID: 19248115
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tetraspanin CD151 is expressed in osteoarthritic cartilage and is involved in pericellular activation of pro-matrix metalloproteinase 7 in osteoarthritic chondrocytes.
    Fujita Y; Shiomi T; Yanagimoto S; Matsumoto H; Toyama Y; Okada Y
    Arthritis Rheum; 2006 Oct; 54(10):3233-43. PubMed ID: 17009258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tensile and compressive properties of healthy and osteoarthritic human articular cartilage.
    Boschetti F; Peretti GM
    Biorheology; 2008; 45(3-4):337-44. PubMed ID: 18836234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mechano-chemical model for the passive swelling response of an isolated chondron under osmotic loading.
    Haider MA; Schugart RC; Setton LA; Guilak F
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):160-71. PubMed ID: 16520959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alterations in the Young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage.
    Jones WR; Ting-Beall HP; Lee GM; Kelley SS; Hochmuth RM; Guilak F
    J Biomech; 1999 Feb; 32(2):119-27. PubMed ID: 10052916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Primary cilia in osteoarthritic chondrocytes: from chondrons to clusters.
    McGlashan SR; Cluett EC; Jensen CG; Poole CA
    Dev Dyn; 2008 Aug; 237(8):2013-20. PubMed ID: 18330928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function.
    Yudoh K; Nguyen vT; Nakamura H; Hongo-Masuko K; Kato T; Nishioka K
    Arthritis Res Ther; 2005; 7(2):R380-91. PubMed ID: 15743486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-term changes in cell and matrix damage following mechanical injury of articular cartilage explants and modelling of microphysical mediators.
    Morel V; Quinn TM
    Biorheology; 2004; 41(3-4):509-19. PubMed ID: 15299282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Passive osmotic properties of in situ human articular chondrocytes within non-degenerate and degenerate cartilage.
    Bush PG; Hall AC
    J Cell Physiol; 2005 Jul; 204(1):309-19. PubMed ID: 15668989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Progress of research in osteoarthritis. Metalloproteinases in osteoarthritis].
    Okada A; Okada Y
    Clin Calcium; 2009 Nov; 19(11):1593-601. PubMed ID: 19880991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chondrocyte number and proteoglycan synthesis in the aging and osteoarthritic human articular cartilage.
    Bobacz K; Erlacher L; Smolen J; Soleiman A; Graninger WB
    Ann Rheum Dis; 2004 Dec; 63(12):1618-22. PubMed ID: 15547085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The structure and function of the pericellular matrix of articular cartilage.
    Wilusz RE; Sanchez-Adams J; Guilak F
    Matrix Biol; 2014 Oct; 39():25-32. PubMed ID: 25172825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanical properties of knee articular cartilage.
    Laasanen MS; Töyräs J; Korhonen RK; Rieppo J; Saarakkala S; Nieminen MT; Hirvonen J; Jurvelin JS
    Biorheology; 2003; 40(1-3):133-40. PubMed ID: 12454397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9.
    Cucchiarini M; Thurn T; Weimer A; Kohn D; Terwilliger EF; Madry H
    Arthritis Rheum; 2007 Jan; 56(1):158-67. PubMed ID: 17195218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage.
    Choi JB; Youn I; Cao L; Leddy HA; Gilchrist CL; Setton LA; Guilak F
    J Biomech; 2007; 40(12):2596-603. PubMed ID: 17397851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.