BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 15652559)

  • 1. Load-shift--numerical evaluation of a new design philosophy for uncemented hip prostheses.
    Goetzen N; Lampe F; Nassut R; Morlock MM
    J Biomech; 2005 Mar; 38(3):595-604. PubMed ID: 15652559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Migration and cyclic motion of a new short-stemmed hip prosthesis--a biomechanical in vitro study.
    Westphal FM; Bishop N; Honl M; Hille E; PĆ¼schel K; Morlock MM
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):834-40. PubMed ID: 16806616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain adaptive bone remodelling: influence of the implantation technique.
    Behrens BA; Bouguecha A; Nolte I; Meyer-Lindenberg A; Stukenborg-Colsman C; Pressel T
    Stud Health Technol Inform; 2008; 133():33-44. PubMed ID: 18376011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical evaluation of two types of short-stemmed hip prostheses compared to the trust plate prosthesis by three-dimensional measurement of micromotions.
    Fottner A; Schmid M; Birkenmaier C; Mazoochian F; Plitz W; Volkmar J
    Clin Biomech (Bristol, Avon); 2009 Jun; 24(5):429-34. PubMed ID: 19307048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on design method for the individual anatomical hip joint endoprosthesis].
    Gong X; Kang L; Wang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):92-6. PubMed ID: 18435265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary stability of uncemented femoral resurfacing implants for varying interface parameters and material formulations during walking and stair climbing.
    Rothstock S; Uhlenbrock A; Bishop N; Morlock M
    J Biomech; 2010 Feb; 43(3):521-6. PubMed ID: 19913227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Load transfer with the Austin Moore cementless hip prosthesis.
    Keaveny TM; Bartel DL
    J Orthop Res; 1993 Mar; 11(2):272-84. PubMed ID: 8483040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modeling of resurfacing hip prosthesis: estimation of accuracy through experimental validation.
    Taddei F; Martelli S; Gill HS; Cristofolini L; Viceconti M
    J Biomech Eng; 2010 Feb; 132(2):021002. PubMed ID: 20370239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stemmed femoral knee prostheses: effects of prosthetic design and fixation on bone loss.
    van Lenthe GH; Willems MM; Verdonschot N; de Waal Malefijt MC; Huiskes R
    Acta Orthop Scand; 2002 Dec; 73(6):630-7. PubMed ID: 12553509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessments of different kinds of stems by experiments and FEM analysis: appropriate stress distribution on a hip prosthesis.
    Sakai R; Itoman M; Mabuchi K
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):826-33. PubMed ID: 16701927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Finite element analysis of changes in femoral stresses after elite total hip arthroplasty].
    He RX; Luo YM; Yan SG; Wu HB
    Zhonghua Yi Xue Za Zhi; 2004 Sep; 84(18):1549-53. PubMed ID: 15500718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Three-dimensional finite element analysis responsible to bone cement with customized prosthesis of proximal segmental femur].
    Liu Y; Tu CQ; Li XB; Duan H; Pei FX
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2007 Mar; 38(2):324-7. PubMed ID: 17441361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro.
    Kassi JP; Heller MO; Stoeckle U; Perka C; Duda GN
    J Biomech; 2005 May; 38(5):1143-54. PubMed ID: 15797595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Photoelastic stress analysis of human femurs before and after implantation of different models of femur neck prostheses].
    Wieners G; Pech M; Streitparth F; Jansson V; Plitz W
    Z Orthop Ihre Grenzgeb; 2007; 145(1):81-7. PubMed ID: 17345548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling.
    Be'ery-Lipperman M; Gefen A
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biomechanical aspects of load-bearing capacity after total endoprosthesis replacement of the hip joint. An evaluation of current knowledge and review of the literature].
    Wirtz DC; Heller KD; Niethard FU
    Z Orthop Ihre Grenzgeb; 1998; 136(4):310-6. PubMed ID: 9795432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Finite Element Analysis (FEA) for the structure capacity of proximal femur during falling--(II). The effects of falling configuration and load locations on the structural capacity of the proximal femur].
    Fan L; Wang E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1245-9. PubMed ID: 17228718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical simulator for the upper femur.
    Munting E; Verhelpen M
    Acta Orthop Belg; 1993; 59(2):123-9. PubMed ID: 8372646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical investigations of stress shielding in total hip prostheses.
    Behrens BA; Wirth CJ; Windhagen H; Nolte I; Meyer-Lindenberg A; Bouguecha A
    Proc Inst Mech Eng H; 2008 Jul; 222(5):593-600. PubMed ID: 18756678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.