BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 15652803)

  • 1. Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments.
    Imin N; Nizamidin M; Daniher D; Nolan KE; Rose RJ; Rolfe BG
    Plant Physiol; 2005 Apr; 137(4):1250-60. PubMed ID: 15749990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies.
    Zhu Y; Akkaya KC; Ruta J; Yokoyama N; Wang C; Ruwolt M; Lima DB; Lehmann M; Liu F
    Nat Commun; 2024 Apr; 15(1):3290. PubMed ID: 38632225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ProMEX - a mass spectral reference database for plant proteomics.
    Wienkoop S; Staudinger C; Hoehenwarter W; Weckwerth W; Egelhofer V
    Front Plant Sci; 2012; 3():125. PubMed ID: 22685450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The plant organelles database (PODB): a collection of visualized plant organelles and protocols for plant organelle research.
    Mano S; Miwa T; Nishikawa S; Mimura T; Nishimura M
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D929-37. PubMed ID: 17932059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing protein trafficking by proximity labeling-based proteomics.
    Wang Y; Qin W
    Bioorg Chem; 2024 Feb; 143():107041. PubMed ID: 38134520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to identify close friends: mapping organelle membrane proximity proteomes.
    Kirschner GK
    Plant J; 2024 Apr; 118(1):5-6. PubMed ID: 38552103
    [No Abstract]   [Full Text] [Related]  

  • 7. Sub-cellular proteomics of Medicago truncatula.
    Lee J; Lei Z; Watson BS; Sumner LW
    Front Plant Sci; 2013; 4():112. PubMed ID: 23641248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gel-based proteomics approach for detecting low nitrogen-responsive proteins in cultivated rice species.
    Kim du H; Shibato J; Kim DW; Oh MK; Kim MK; Shim IeS; Iwahashi H; Masuo Y; Rakwal R
    Physiol Mol Biol Plants; 2009 Jan; 15(1):31-41. PubMed ID: 23572910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 1.7 Å resolution structure of At2g44920, a pentapeptide-repeat protein in the thylakoid lumen of Arabidopsis thaliana.
    Ni S; McGookey ME; Tinch SL; Jones AN; Jayaraman S; Tong L; Kennedy MA
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Dec; 67(Pt 12):1480-4. PubMed ID: 22139148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols.
    Rajjou L; Lovigny Y; Groot SP; Belghazi M; Job C; Job D
    Plant Physiol; 2008 Sep; 148(1):620-41. PubMed ID: 18599647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis of early germs with high-oil and normal inbred lines in maize.
    Liu Z; Yang X; Fu Y; Zhang Y; Yan J; Song T; Rocheford T; Li J
    Mol Biol Rep; 2009 Apr; 36(4):813-21. PubMed ID: 18523866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Medicago truncatula Genomics.
    Ané JM; Zhu H; Frugoli J
    Int J Plant Genomics; 2008; 2008():256597. PubMed ID: 18288239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites.
    Wolschin F; Weckwerth W
    Plant Methods; 2005 Nov; 1(1):9. PubMed ID: 16270910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. System, trends and perspectives of proteomics in dicot plants Part II: Proteomes of the complex developmental stages.
    Agrawal GK; Yonekura M; Iwahashi Y; Iwahashi H; Rakwal R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):125-36. PubMed ID: 15652803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. System, trends and perspectives of proteomics in dicot plants Part I: Technologies in proteome establishment.
    Agrawal GK; Yonekura M; Iwahashi Y; Iwahashi H; Rakwal R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):109-23. PubMed ID: 15652802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. System, trends and perspectives of proteomics in dicot plants. Part III: Unraveling the proteomes influenced by the environment, and at the levels of function and genetic relationships.
    Agrawal GK; Yonekura M; Iwahashi Y; Iwahashi H; Rakwal R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):137-45. PubMed ID: 15652804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rejuvenating rice proteomics: facts, challenges, and visions.
    Agrawal GK; Jwa NS; Iwahashi Y; Yonekura M; Iwahashi H; Rakwal R
    Proteomics; 2006 Oct; 6(20):5549-76. PubMed ID: 16991195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rice proteomics: a cornerstone for cereal food crop proteomes.
    Agrawal GK; Rakwal R
    Mass Spectrom Rev; 2006; 25(1):1-53. PubMed ID: 15957154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteins analysis in plants: a proteomic approach.
    Laugesen S; Messinese E; Hem S; Pichereaux C; Grat S; Ranjeva R; Rossignol M; Bono JJ
    Phytochemistry; 2006 Oct; 67(20):2208-14. PubMed ID: 16962150
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.