BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15653160)

  • 1. Fabrication of monodispersed Taxol-loaded particles using electrohydrodynamic atomization.
    Ding L; Lee T; Wang CH
    J Control Release; 2005 Feb; 102(2):395-413. PubMed ID: 15653160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro.
    Xie J; Marijnissen JC; Wang CH
    Biomaterials; 2006 Jun; 27(17):3321-32. PubMed ID: 16490248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrohydrodynamic atomization for biodegradable polymeric particle production.
    Xie J; Lim LK; Phua Y; Hua J; Wang CH
    J Colloid Interface Sci; 2006 Oct; 302(1):103-12. PubMed ID: 16842810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery.
    Soga O; van Nostrum CF; Fens M; Rijcken CJ; Schiffelers RM; Storm G; Hennink WE
    J Control Release; 2005 Mar; 103(2):341-53. PubMed ID: 15763618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique.
    Pandita D; Ahuja A; Velpandian T; Lather V; Dutta T; Khar RK
    Pharmazie; 2009 May; 64(5):301-10. PubMed ID: 19530440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tocopheryl succinate-based lipid nanospheres for paclitaxel delivery: preparation, characters, and in vitro release kinetics.
    Shi K; Jiang Y; Zhang M; Wang Y; Cui F
    Drug Deliv; 2010 Jan; 17(1):1-10. PubMed ID: 19941405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paclitaxel-loaded polymeric nanoparticles based on PCL-PEG-PCL: preparation, in vitro and in vivo evaluation.
    Zhang L; He Y; Yu M; Song C
    J Control Release; 2011 Nov; 152 Suppl 1():e114-6. PubMed ID: 22195789
    [No Abstract]   [Full Text] [Related]  

  • 8. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells.
    Gao C; Pan J; Lu W; Zhang M; Zhou L; Tian J
    Anticancer Drugs; 2009 Oct; 20(9):807-14. PubMed ID: 19696655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro.
    Jin C; Bai L; Wu H; Tian F; Guo G
    Biomaterials; 2007 Sep; 28(25):3724-30. PubMed ID: 17509678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro.
    Xie J; Wang CH
    Pharm Res; 2006 Aug; 23(8):1817-26. PubMed ID: 16841195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles.
    Lee MK; Lim SJ; Kim CK
    Biomaterials; 2007 Apr; 28(12):2137-46. PubMed ID: 17257668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles.
    Zhang Z; Feng SS
    Biomaterials; 2006 Jul; 27(21):4025-33. PubMed ID: 16564085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of surfactant on fabrication and characterization of paclitaxel-loaded polybutylcyanoacrylate nanoparticulate delivery systems.
    Mitra A; Lin S
    J Pharm Pharmacol; 2003 Jul; 55(7):895-902. PubMed ID: 12906746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel self-assembling PEG-p-(CL-co-TMC) polymeric micelles as safe and effective delivery system for paclitaxel.
    Danhier F; Magotteaux N; Ucakar B; Lecouturier N; Brewster M; Préat V
    Eur J Pharm Biopharm; 2009 Oct; 73(2):230-8. PubMed ID: 19577643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paclitaxel delivery from PLGA foams for controlled release in post-surgical chemotherapy against glioblastoma multiforme.
    Ong BY; Ranganath SH; Lee LY; Lu F; Lee HS; Sahinidis NV; Wang CH
    Biomaterials; 2009 Jun; 30(18):3189-96. PubMed ID: 19285718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study on biodegradable polymer-paclitaxel conjugate micelles for chemotherapy of C6 glioma.
    Wang Z; Hu X; Yue J; Jing X
    J Control Release; 2011 Nov; 152 Suppl 1():e41-2. PubMed ID: 22195914
    [No Abstract]   [Full Text] [Related]  

  • 17. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma.
    Ranganath SH; Wang CH
    Biomaterials; 2008 Jul; 29(20):2996-3003. PubMed ID: 18423584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paclitaxel delivery from coronary stents.
    Richard RE; Schwarz M; Ranade S; Chan AK; Matyjaszewski K; Sumerlin B
    Biomacromolecules; 2005; 6(6):3410-8. PubMed ID: 16283773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cremophor-free intravenous microemulsions for paclitaxel I: formulation, cytotoxicity and hemolysis.
    Nornoo AO; Osborne DW; Chow DS
    Int J Pharm; 2008 Feb; 349(1-2):108-16. PubMed ID: 17869459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo performance of implantable biodegradable preparations delivering Paclitaxel and Etanidazole for the treatment of glioma.
    Kumar Naraharisetti P; Yung Sheng Ong B; Wei Xie J; Kam Yiu Lee T; Wang CH; Sahinidis NV
    Biomaterials; 2007 Feb; 28(5):886-94. PubMed ID: 17067667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.