These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15653334)

  • 1. A structure-taste study of arylsulfonyl(cyclo)alkanecarboxylic acids.
    Lysiak V; Ratajczak A; Mencel A; Jarzembek K; Polanski J
    Bioorg Med Chem; 2005 Feb; 13(3):671-5. PubMed ID: 15653334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-taste relationships for disubstituted phenylsulfamate tastants using classification and regression tree (CART) analysis.
    Spillane WJ; Kelly DP; Curran PJ; Feeney BG
    J Agric Food Chem; 2006 Aug; 54(16):5996-6004. PubMed ID: 16881707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrazoles as carboxylic acid surrogates in the suosan sweetener series.
    Owens WH
    J Pharm Sci; 1990 Sep; 79(9):826-8. PubMed ID: 2273468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A search for new glucophores by isosteric replacement of carboxylic function.
    Polański J; Jarzembek K; Łysiak V
    Acta Pol Pharm; 2000 Nov; 57 Suppl():80-1. PubMed ID: 11293274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation analysis of aspartame-based sweeteners by NMR spectroscopy, molecular dynamics simulations, and X-ray diffraction studies.
    De Capua A; Goodman M; Amino Y; Saviano M; Benedetti E
    Chembiochem; 2006 Feb; 7(2):377-87. PubMed ID: 16372303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxylic acid replacement structure-activity relationships in suosan type sweeteners. A sweet taste antagonist. 1.
    Muller GW; Culberson JC; Roy G; Ziegler J; Walters DE; Kellogg MS; Schiffman SS; Warwick ZS
    J Med Chem; 1992 May; 35(10):1747-51. PubMed ID: 1588556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of structure-taste relationships for monosubstituted phenylsulfamate sweeteners using classification and regression tree (CART) analysis.
    Kelly DP; Spillane WJ; Newell J
    J Agric Food Chem; 2005 Aug; 53(17):6750-8. PubMed ID: 16104795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of structure-taste relationships for thiazolyl-, benzothiazolyl-, and thiadiazolylsulfamates.
    Spillane WJ; Coyle CM; Feeney BG; Thompson EF
    J Agric Food Chem; 2009 Jun; 57(12):5486-93. PubMed ID: 19456131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [New facts about the molecular background of isovanilline-type sweeteners].
    Kálmán N; Magyarné-Jeszenszki E; Kurtán T; Antus S
    Acta Pharm Hung; 2014; 84(1):15-9. PubMed ID: 24809163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant curculin heterodimer exhibits taste-modifying and sweet-tasting activities.
    Suzuki M; Kurimoto E; Nirasawa S; Masuda Y; Hori K; Kurihara Y; Shimba N; Kawai M; Suzuki E; Kato K
    FEBS Lett; 2004 Aug; 573(1-3):135-8. PubMed ID: 15327988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery and structure determination of a novel Maillard-derived sweetness enhancer by application of the comparative taste dilution analysis (cTDA).
    Ottinger H; Soldo T; Hofmann T
    J Agric Food Chem; 2003 Feb; 51(4):1035-41. PubMed ID: 12568569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating coding of taste qualities with the taste modifier miraculin in the common marmoset.
    Danilova V; Hellekant G
    Brain Res Bull; 2006 Jan; 68(5):315-21. PubMed ID: 16377437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic studies of structure and physiological activity of alapyridaine. A novel food-born taste enhancer.
    Soldo T; Frank O; Ottinger H; Hofmann T
    Mol Nutr Food Res; 2004 Sep; 48(4):270-81. PubMed ID: 15497178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Riboflavin-binding protein exhibits selective sweet suppression toward protein sweeteners.
    Maehashi K; Matano M; Kondo A; Yamamoto Y; Udaka S
    Chem Senses; 2007 Feb; 32(2):183-90. PubMed ID: 17167172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sweet taste receptor: a single receptor with multiple sites and modes of interaction.
    Temussi P
    Adv Food Nutr Res; 2007; 53():199-239. PubMed ID: 17900500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila melanogaster prefers compounds perceived sweet by humans.
    Gordesky-Gold B; Rivers N; Ahmed OM; Breslin PA
    Chem Senses; 2008 Mar; 33(3):301-9. PubMed ID: 18234713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral gustatory processing of sweet stimuli by golden hamsters.
    Frank ME; Formaker BK; Hettinger TP
    Brain Res Bull; 2005 Jul; 66(1):70-84. PubMed ID: 15925146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the negative charge on RNHSO3-M+ an essential requirement for sulfamate sweetness?
    Spillane WJ; Hanniffy GG
    J Agric Food Chem; 2003 May; 51(10):3056-9. PubMed ID: 12720391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potent and orally active ET(A) selective antagonists with 5,7-diarylcyclopenteno[1,2-b]pyridine-6-carboxylic acid structures.
    Yoshizumi T; Takahashi H; Ohtake N; Jona H; Sato Y; Kishino H; Sakamoto T; Ozaki S; Takahashi H; Shibata Y; Ishii Y; Saito M; Okada M; Hayama T; Nishikibe M
    Bioorg Med Chem; 2004 May; 12(9):2139-50. PubMed ID: 15080914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From small sweeteners to sweet proteins: anatomy of the binding sites of the human T1R2_T1R3 receptor.
    Morini G; Bassoli A; Temussi PA
    J Med Chem; 2005 Aug; 48(17):5520-9. PubMed ID: 16107151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.