BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15653358)

  • 1. Optimization of the design and operation of FAIMS analyzers.
    Shvartsburg AA; Tang K; Smith RD
    J Am Soc Mass Spectrom; 2005 Jan; 16(1):2-12. PubMed ID: 15653358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAIMS operation for realistic gas flow profile and asymmetric waveforms including electronic noise and ripple.
    Shvartsburg AA; Tang K; Smith RD
    J Am Soc Mass Spectrom; 2005 Sep; 16(9):1447-1455. PubMed ID: 16006140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling of the resolving power and sensitivity for planar FAIMS and mobility-based discrimination in flow- and field-driven analyzers.
    Shvartsburg AA; Smith RD
    J Am Soc Mass Spectrom; 2007 Sep; 18(9):1672-81. PubMed ID: 17723907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the resolution and sensitivity of FAIMS analyses.
    Shvartsburg AA; Tang K; Smith RD
    J Am Soc Mass Spectrom; 2004 Oct; 15(10):1487-1498. PubMed ID: 15465362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution field asymmetric waveform ion mobility spectrometry using new planar geometry analyzers.
    Shvartsburg AA; Li F; Tang K; Smith RD
    Anal Chem; 2006 Jun; 78(11):3706-14. PubMed ID: 16737227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of rectangular and bisinusoidal waveforms in a miniature planar high-field asymmetric waveform ion mobility spectrometer.
    Prieto M; Tsai CW; Boumsellek S; Ferran R; Kaminsky I; Harris S; Yost RA
    Anal Chem; 2011 Dec; 83(24):9237-43. PubMed ID: 22017325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of the helium requirement in high-field asymmetric waveform ion mobility spectrometry (FAIMS): beneficial effects of decreasing the analyzer gap width on peptide analysis.
    Barnett DA; Ouellette RJ
    Rapid Commun Mass Spectrom; 2011 Jul; 25(14):1959-71. PubMed ID: 21698679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding and designing field asymmetric waveform ion mobility spectrometry separations in gas mixtures.
    Shvartsburg AA; Tang K; Smith RD
    Anal Chem; 2004 Dec; 76(24):7366-74. PubMed ID: 15595881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On an aerodynamic mechanism to enhance ion transmission and sensitivity of FAIMS for nano-electrospray ionization-mass spectrometry.
    Prasad S; Belford MW; Dunyach JJ; Purves RW
    J Am Soc Mass Spectrom; 2014 Dec; 25(12):2143-53. PubMed ID: 25267086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of ion distortion in field asymmetric waveform ion mobility spectrometry via variation of dispersion field and gas temperature.
    Robinson EW; Shvartsburg AA; Tang K; Smith RD
    Anal Chem; 2008 Oct; 80(19):7508-15. PubMed ID: 18729473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high voltage asymmetric waveform generator for FAIMS.
    Canterbury JD; Gladden J; Buck L; Olund R; MacCoss MJ
    J Am Soc Mass Spectrom; 2010 Jul; 21(7):1118-21. PubMed ID: 20332067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of ion motion in FAIMS through combined use of SIMION and modified SDS.
    Prasad S; Tang K; Manura D; Papanastasiou D; Smith RD
    Anal Chem; 2009 Nov; 81(21):8749-57. PubMed ID: 19785446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution differential ion mobility separations using helium-rich gases.
    Shvartsburg AA; Danielson WF; Smith RD
    Anal Chem; 2010 Mar; 82(6):2456-62. PubMed ID: 20151640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of paralytic shellfish toxins using high-field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry.
    Beach DG; Melanson JE; Purves RW
    Anal Bioanal Chem; 2015 Mar; 407(9):2473-84. PubMed ID: 25619987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of higher-order differential ion mobility separations using new asymmetric waveforms.
    Shvartsburg AA; Mashkevich SV; Smith RD
    J Phys Chem A; 2006 Mar; 110(8):2663-73. PubMed ID: 16494377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distortion of ion structures by field asymmetric waveform ion mobility spectrometry.
    Shvartsburg AA; Li F; Tang K; Smith RD
    Anal Chem; 2007 Feb; 79(4):1523-8. PubMed ID: 17297950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).
    Bonneil E; Pfammatter S; Thibault P
    J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation study of a new racetrack FAIMS analyzer to achieve both high-resolution and high-sensitivity.
    Fu S; Wang C; Li J; Yu J; Tang K
    Talanta; 2024 Aug; 276():126305. PubMed ID: 38788385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nontarget analysis of urine by electrospray ionization-high field asymmetric waveform ion mobility-tandem mass spectrometry.
    Beach DG; Gabryelski W
    Anal Chem; 2011 Dec; 83(23):9107-13. PubMed ID: 21978137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional gas-phase separations coupled to mass spectrometry for analysis of complex mixtures.
    Tang K; Li F; Shvartsburg AA; Strittmatter EF; Smith RD
    Anal Chem; 2005 Oct; 77(19):6381-8. PubMed ID: 16194103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.