BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15653428)

  • 1. Thermal unfolding of ribonuclease T1 studied by multi-dimensional NMR spectroscopy.
    Matsuura H; Shimotakahara S; Sakuma C; Tashiro M; Shindo H; Mochizuki K; Yamagishi A; Kojima M; Takahashi K
    Biol Chem; 2004 Dec; 385(12):1157-64. PubMed ID: 15653428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protein folding intermediate of ribonuclease T1 characterized at high resolution by 1D and 2D real-time NMR spectroscopy.
    Balbach J; Steegborn C; Schindler T; Schmid FX
    J Mol Biol; 1999 Jan; 285(2):829-42. PubMed ID: 9878447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example.
    Pancoska P; Fabian H; Yoder G; Baumruk V; Keiderling TA
    Biochemistry; 1996 Oct; 35(40):13094-106. PubMed ID: 8855946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-strand coupling and site-specific unfolding thermodynamics of a trpzip beta-hairpin peptide using 13C isotopic labeling and IR spectroscopy.
    Huang R; Wu L; McElheny D; Bour P; Roy A; Keiderling TA
    J Phys Chem B; 2009 Apr; 113(16):5661-74. PubMed ID: 19326892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and thermodynamic thermal stabilities of ribonuclease A and ribonuclease B.
    Arnold U; Ulbrich-Hofmann R
    Biochemistry; 1997 Feb; 36(8):2166-72. PubMed ID: 9047316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts.
    Oobatake M; Takahashi S; Ooi T
    J Biochem; 1979 Jul; 86(1):55-63. PubMed ID: 39067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible thermal unfolding of ribonuclease T1 in reverse micelles.
    Shastry MC; Eftink MR
    Biochemistry; 1996 Apr; 35(13):4094-101. PubMed ID: 8672444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional mid-IR and near-IR correlation spectra of ribonuclease A: using overtones and combination modes to monitor changes in secondary structure.
    Schultz CP; Fabian H; Mantsch HH
    Biospectroscopy; 1998; 4(5 Suppl):S19-29. PubMed ID: 9787911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-nearest neighbor effects on the thermodynamics of unfolding of a model mRNA pseudoknot.
    Theimer CA; Wang Y; Hoffman DW; Krisch HM; Giedroc DP
    J Mol Biol; 1998 Jun; 279(3):545-64. PubMed ID: 9641977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal stabilization of ribonuclease T1 by carboxymethylation at Glu-58 as revealed by 1H nuclear magnetic resonance spectroscopy.
    Kojima M; Mizukoshi T; Miyano H; Suzuki E; Tanokura M; Takahashi K
    FEBS Lett; 1994 Sep; 351(3):389-92. PubMed ID: 7915996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold denaturation of ubiquitin at high pressure.
    Kitahara R; Okuno A; Kato M; Taniguchi Y; Yokoyama S; Akasaka K
    Magn Reson Chem; 2006 Jul; 44 Spec No():S108-13. PubMed ID: 16826551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the NMR structure of Gln25-ribonuclease T1.
    Hatano K; Kojima M; Suzuki E; Tanokura M; Takahashi K
    Biol Chem; 2003 Aug; 384(8):1173-83. PubMed ID: 12974386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanism underlying the thermal stability and pH-induced unfolding of CHABII.
    Wei Z; Song J
    J Mol Biol; 2005 Apr; 348(1):205-18. PubMed ID: 15808864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High pressure NMR reveals that apomyoglobin is an equilibrium mixture from the native to the unfolded.
    Kitahara R; Yamada H; Akasaka K; Wright PE
    J Mol Biol; 2002 Jul; 320(2):311-9. PubMed ID: 12079388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study.
    Pfeiffer S; Karimi-Nejad Y; Rüterjans H
    J Mol Biol; 1997 Feb; 266(2):400-23. PubMed ID: 9047372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic contributions to the initiation of transcription in E. coli.
    Ramprakash J; Schwarz FP
    Biophys Chem; 2008 Dec; 138(3):91-8. PubMed ID: 18834656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High pressure NMR reveals a variety of fluctuating conformers in beta-lactoglobulin.
    Kuwata K; Li H; Yamada H; Batt CA; Goto Y; Akasaka K
    J Mol Biol; 2001 Feb; 305(5):1073-83. PubMed ID: 11162115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoflavodoxin (un)folding followed at the residue level by NMR.
    van Mierlo CP; van den Oever JM; Steensma E
    Protein Sci; 2000 Jan; 9(1):145-57. PubMed ID: 10739257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A purification method for labile variants of ribonuclease T1.
    Mayr LM; Schmid FX
    Protein Expr Purif; 1993 Feb; 4(1):52-8. PubMed ID: 8425108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.