These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 156535)
1. Sedative effects of apomorphine in an animal model of Huntington's disease. Sanberg PR; Lehmann J; Fibiger HC Arch Neurol; 1979 Jun; 36(6):349-50. PubMed ID: 156535 [TBL] [Abstract][Full Text] [Related]
2. Kainic acid lesions of the striatum: behavioural sequalae similar to Huntington's chorea. Mason ST; Fibiger HC Brain Res; 1978 Oct; 155(2):313-29. PubMed ID: 28817 [TBL] [Abstract][Full Text] [Related]
3. Kainic acid lesions of the striatum dissociate amphetamine and apomorphine stereotypy: similarities to Huntingdon's chorea. Mason ST; Sanberg PR; Fibiger HC Science; 1978 Jul; 201(4353):352-5. PubMed ID: 26976 [TBL] [Abstract][Full Text] [Related]
4. Rotational behaviour in rats with unilateral striatal kainic acid lesions: a behavioural model for studies on intact dopamine receptors. Schwarcz R; Fuxe K; Agnati LF; Hökfelt T; Coyle JT Brain Res; 1979 Jul; 170(3):485-95. PubMed ID: 37986 [TBL] [Abstract][Full Text] [Related]
5. Different patterns of rotational behavior in rats after dorsal or ventral striatal lesions with ibotenic acid. Kafetzopoulos E; Vlaha V; Konitsiotis S Pharmacol Biochem Behav; 1988 Feb; 29(2):403-6. PubMed ID: 3362934 [TBL] [Abstract][Full Text] [Related]
6. 7-[3-(4-[2,3-Dimethylphenyl]piperazinyl)propoxy]-2(1H)-quinolinone (OPC-4392), a presynaptic dopamine autoreceptor agonist and postsynaptic D2 receptor antagonist. Yasuda Y; Kikuchi T; Suzuki S; Tsutsui M; Yamada K; Hiyama T Life Sci; 1988; 42(20):1941-54. PubMed ID: 3130534 [TBL] [Abstract][Full Text] [Related]
7. Kainic acid lesions of the striatum in rats mimic the spontaneous motor abnormalities of Huntington's Disease. Mason ST; Fibiger HC Neuropharmacology; 1979 Apr; 18(4):403-7. PubMed ID: 36573 [No Abstract] [Full Text] [Related]
8. Fetal striatal transplants restore electrophysiological sensitivity to dopamine in the lesioned striatum of rats with experimental Huntington's disease. Chen GJ; Jeng CH; Lin SZ; Tsai SH; Wang Y; Chiang YH J Biomed Sci; 2002; 9(4):303-10. PubMed ID: 12145527 [TBL] [Abstract][Full Text] [Related]
9. Multiple receptors for brain dopamine in behavior regulation: concept of dopamine-E and dopamine-I receptors. Cools AR; van Rossum JM Life Sci; 1980 Oct; 27(14):1237-53. PubMed ID: 6255271 [No Abstract] [Full Text] [Related]
10. Asymmetrical motor behavior in rats with unilateral striatal excitotoxic lesions as revealed by the elevated body swing test. Borlongan CV; Randall TS; Cahill DW; Sanberg PR Brain Res; 1995 Apr; 676(1):231-4. PubMed ID: 7796175 [TBL] [Abstract][Full Text] [Related]
11. [Behavioral evaluation of the unilateral lesion model in rats using 6-hydroxydopamine. Correlation between the rotations induced by D-amphetamine, apomorphine and the manual dexterity test]. Pavón N; Vidal L; Alvarez P; Blanco L; Torres A; Rodríguez A; Macías R Rev Neurol; 1998 Jun; 26(154):915-8. PubMed ID: 9658459 [TBL] [Abstract][Full Text] [Related]
12. Behavioral effects of amphetamine and apomorphine after striatal lesions in the rat. Antoniou K; Kafetzopoulos E Pharmacol Biochem Behav; 1992 Nov; 43(3):705-22. PubMed ID: 1448467 [TBL] [Abstract][Full Text] [Related]
13. Amphetamine-induced locomotor activity and stereotypy after kainic acid lesions of the striatum. Mason ST; Sanberg PR; Fibiger HC Life Sci; 1978 Feb; 22(6):451-9. PubMed ID: 24160 [No Abstract] [Full Text] [Related]
14. [Facilitation of a stereotyped motor behavior (climbing behavior) by previous stimulation of dopaminergic receptors: hyposensitivity of autoreceptors?]. Costentin J; Marçais H; Protais P; Baudry M; Martres MP; Schwartz JC C R Acad Hebd Seances Acad Sci D; 1977 Jan; 284(2):143-6. PubMed ID: 402241 [TBL] [Abstract][Full Text] [Related]
15. Role of the mesopontine area in the circling behavior induced by apomorphine in rats bearing unilateral lesion of the entopeduncular nucleus. Murer MG; Riquelme LA; Stern J; Pazo JH Behav Brain Res; 1991 Oct; 45(1):37-43. PubMed ID: 1764203 [TBL] [Abstract][Full Text] [Related]
16. Correlated asymmetries in striatal D1 and D2 binding: relationship to apomorphine-induced rotation. Glick SD; Lyon RA; Hinds PA; Sowek C; Titeler M Brain Res; 1988 Jul; 455(1):43-8. PubMed ID: 2970881 [TBL] [Abstract][Full Text] [Related]
17. The locomotor and stereotype response to dopaminergic drugs and caffeine after intracerebroventricular kainic acid in rats. Kleinrok Z; Turski L; Wawrzyniak M; Cybulska R Pol J Pharmacol Pharm; 1981; 33(2):149-59. PubMed ID: 7198226 [TBL] [Abstract][Full Text] [Related]
18. Impaired learning and memory after kainic acid lesions of the striatum: a behavioral model of Huntington's disease. Sanberg PR; Lehmann J; Fibiger HC Brain Res; 1978 Jun; 149(2):546-51. PubMed ID: 27285 [No Abstract] [Full Text] [Related]
19. Quantifiable bradykinesia, gait abnormalities and Huntington's disease-like striatal lesions in rats chronically treated with 3-nitropropionic acid. Guyot MC; Hantraye P; Dolan R; Palfi S; Maziére M; Brouillet E Neuroscience; 1997 Jul; 79(1):45-56. PubMed ID: 9178864 [TBL] [Abstract][Full Text] [Related]
20. Brain dialysis and dopamine: does the extracellular concentration of dopamine reflect synaptic release? Pani L; Gessa GL; Carboni S; Portas CM; Rossetti ZL Eur J Pharmacol; 1990 May; 180(1):85-90. PubMed ID: 2163865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]