BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15653730)

  • 1. The 3-hydroxy group and 4,5-trans double bond of sphingomyelin are essential for modulation of galactosylceramide transmembrane asymmetry.
    Malewicz B; Valiyaveettil JT; Jacob K; Byun HS; Mattjus P; Baumann WJ; Bittman R; Brown RE
    Biophys J; 2005 Apr; 88(4):2670-80. PubMed ID: 15653730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingomyelin modulates the transbilayer distribution of galactosylceramide in phospholipid membranes.
    Mattjus P; Malewicz B; Valiyaveettil JT; Baumann WJ; Bittman R; Brown RE
    J Biol Chem; 2002 May; 277(22):19476-81. PubMed ID: 11909867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide.
    Hall A; Róg T; Karttunen M; Vattulainen I
    J Phys Chem B; 2010 Jun; 114(23):7797-807. PubMed ID: 20496924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular features of phospholipids that affect glycolipid transfer protein-mediated galactosylceramide transfer between vesicles.
    Nylund M; Kjellberg MA; Molotkovsky JG; Byun HS; Bittman R; Mattjus P
    Biochim Biophys Acta; 2006 Jun; 1758(6):807-12. PubMed ID: 16777057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by 2H-NMR spectroscopy.
    Mehnert T; Jacob K; Bittman R; Beyer K
    Biophys J; 2006 Feb; 90(3):939-46. PubMed ID: 16284259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miscibility phase diagrams of giant vesicles containing sphingomyelin.
    Veatch SL; Keller SL
    Phys Rev Lett; 2005 Apr; 94(14):148101. PubMed ID: 15904115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine.
    Brown RE; Anderson WH; Kulkarni VS
    Biophys J; 1995 Apr; 68(4):1396-405. PubMed ID: 7787025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures.
    Bunge A; Müller P; Stöckl M; Herrmann A; Huster D
    Biophys J; 2008 Apr; 94(7):2680-90. PubMed ID: 18178660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts.
    McIntosh TJ; Vidal A; Simon SA
    Biophys J; 2003 Sep; 85(3):1656-66. PubMed ID: 12944280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galactosylceramide domain microstructure: impact of cholesterol and nucleation/growth conditions.
    Blanchette CD; Lin WC; Ratto TV; Longo ML
    Biophys J; 2006 Jun; 90(12):4466-78. PubMed ID: 16565044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The curvature and cholesterol content of phospholipid bilayers alter the transbilayer distribution of specific molecular species of phosphatidylethanolamine.
    Williams EE; Cooper JA; Stillwell W; Jenski LJ
    Mol Membr Biol; 2000; 17(3):157-64. PubMed ID: 11128974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid-phase chain unsaturation controlling domain microstructure and phase in ternary lipid bilayers containing GalCer and cholesterol.
    Lin WC; Blanchette CD; Longo ML
    Biophys J; 2007 Apr; 92(8):2831-41. PubMed ID: 17237202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transbilayer asymmetry and sphingomyelin composition modulate the preferential membrane partitioning of the nicotinic acetylcholine receptor in Lo domains.
    Perillo VL; Peñalva DA; Vitale AJ; Barrantes FJ; Antollini SS
    Arch Biochem Biophys; 2016 Feb; 591():76-86. PubMed ID: 26702544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy.
    Bartels T; Lankalapalli RS; Bittman R; Beyer K; Brown MF
    J Am Chem Soc; 2008 Nov; 130(44):14521-32. PubMed ID: 18839945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid rafts reconstituted in model membranes.
    Dietrich C; Bagatolli LA; Volovyk ZN; Thompson NL; Levi M; Jacobson K; Gratton E
    Biophys J; 2001 Mar; 80(3):1417-28. PubMed ID: 11222302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of NBD-labelled fatty amines with liquid-ordered membranes: a combined molecular dynamics simulation and fluorescence spectroscopy study.
    Filipe HA; Bowman D; Palmeira T; Cardoso RM; Loura LM; Moreno MJ
    Phys Chem Chem Phys; 2015 Nov; 17(41):27534-47. PubMed ID: 26426766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of galactosylceramide on the dynamics of cholesterol-rich lipid membranes.
    Hall A; Róg T; Vattulainen I
    J Phys Chem B; 2011 Dec; 115(49):14424-34. PubMed ID: 22032265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines.
    Smaby JM; Kulkarni VS; Momsen M; Brown RE
    Biophys J; 1996 Feb; 70(2):868-77. PubMed ID: 8789104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.