BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 15653830)

  • 1. Genome-wide regulatory complexity in yeast promoters: separation of functionally conserved and neutral sequence.
    Chin CS; Chuang JH; Li H
    Genome Res; 2005 Feb; 15(2):205-13. PubMed ID: 15653830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression studies and promoter analysis of the nuclear gene for mitochondrial transcription factor 1 (MTF1) in yeast.
    Jan PS; Stein T; Hehl S; Lisowsky T
    Curr Genet; 1999 Aug; 36(1-2):37-48. PubMed ID: 10447593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis.
    Cliften PF; Hillier LW; Fulton L; Graves T; Miner T; Gish WR; Waterston RH; Johnston M
    Genome Res; 2001 Jul; 11(7):1175-86. PubMed ID: 11435399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics reveals long, evolutionarily conserved, low-complexity islands in yeast proteins.
    Romov PA; Li F; Lipke PN; Epstein SL; Qiu WG
    J Mol Evol; 2006 Sep; 63(3):415-25. PubMed ID: 16927006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequencing and comparison of yeast species to identify genes and regulatory elements.
    Kellis M; Patterson N; Endrizzi M; Birren B; Lander ES
    Nature; 2003 May; 423(6937):241-54. PubMed ID: 12748633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate of promoter class turn-over in yeast evolution.
    Bazykin GA; Kondrashov AS
    BMC Evol Biol; 2006 Feb; 6():14. PubMed ID: 16472383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae.
    Watanabe K; Yabe M; Kasahara K; Kokubo T
    PLoS One; 2015; 10(6):e0129357. PubMed ID: 26046838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae.
    Capra JA; Paeschke K; Singh M; Zakian VA
    PLoS Comput Biol; 2010 Jul; 6(7):e1000861. PubMed ID: 20676380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Position specific variation in the rate of evolution in transcription factor binding sites.
    Moses AM; Chiang DY; Kellis M; Lander ES; Eisen MB
    BMC Evol Biol; 2003 Aug; 3():19. PubMed ID: 12946282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATF/CREB sites present in sub-telomeric regions of Saccharomyces cerevisiae chromosomes are part of promoters and act as UAS/URS of highly conserved COS genes.
    Spode I; Maiwald D; Hollenberg CP; Suckow M
    J Mol Biol; 2002 May; 319(2):407-20. PubMed ID: 12051917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of the region of the mitochondrial genome containing the ATPase subunit 9 gene in the two related yeast species Saccharomyces douglasii and Saccharomyces cerevisiae.
    Nicoletti L; Laveder P; Pellizzari R; Cardazzo B; Carignani G
    Curr Genet; 1994 Jun; 25(6):504-7. PubMed ID: 8082200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of a glucose-regulated ADH gene in the genus Saccharomyces.
    Young ET; Sloan J; Miller B; Li N; van Riper K; Dombek KM
    Gene; 2000 Mar; 245(2):299-309. PubMed ID: 10717481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome sequence of the lager brewing yeast, an interspecies hybrid.
    Nakao Y; Kanamori T; Itoh T; Kodama Y; Rainieri S; Nakamura N; Shimonaga T; Hattori M; Ashikari T
    DNA Res; 2009 Apr; 16(2):115-29. PubMed ID: 19261625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics: Yeast rises again.
    Salzberg SL
    Nature; 2003 May; 423(6937):233-4. PubMed ID: 12748625
    [No Abstract]   [Full Text] [Related]  

  • 15. Minimal regulatory spaces in yeast genomes.
    Chen WH; Wei W; Lercher MJ
    BMC Genomics; 2011 Jun; 12():320. PubMed ID: 21679449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polygenic evolution of a sugar specialization trade-off in yeast.
    Roop JI; Chang KC; Brem RB
    Nature; 2016 Feb; 530(7590):336-9. PubMed ID: 26863195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulatory code of a eukaryotic genome.
    Harbison CT; Gordon DB; Lee TI; Rinaldi NJ; Macisaac KD; Danford TW; Hannett NM; Tagne JB; Reynolds DB; Yoo J; Jennings EG; Zeitlinger J; Pokholok DK; Kellis M; Rolfe PA; Takusagawa KT; Lander ES; Gifford DK; Fraenkel E; Young RA
    Nature; 2004 Sep; 431(7004):99-104. PubMed ID: 15343339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding functional features in Saccharomyces genomes by phylogenetic footprinting.
    Cliften P; Sudarsanam P; Desikan A; Fulton L; Fulton B; Majors J; Waterston R; Cohen BA; Johnston M
    Science; 2003 Jul; 301(5629):71-6. PubMed ID: 12775844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional conservation of nucleosome formation selectively biases presumably neutral molecular variation in yeast genomes.
    Babbitt GA; Cotter CR
    Genome Biol Evol; 2011; 3():15-22. PubMed ID: 21135411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide co-occurrence of promoter elements reveals a cis-regulatory cassette of rRNA transcription motifs in Saccharomyces cerevisiae.
    Sudarsanam P; Pilpel Y; Church GM
    Genome Res; 2002 Nov; 12(11):1723-31. PubMed ID: 12421759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.