These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15654244)

  • 61. EXPERIMENTAL EVALUATION OF NEUTRON SHIELDING MATERIALS.
    Campo X; Méndez R; Lacerda MAS; Garrido D; Embid M; Sanz J
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):382-385. PubMed ID: 29036700
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Shielding evaluation of lead-free board for diagnostic X-rays].
    Katoh Y; Tsukada M; Mita S; Fukushi M; Nyui Y; Abe S; Kimura J
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2010 Dec; 66(12):1555-60. PubMed ID: 21282911
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Do angles of obliquity apply to 30 degrees scattered radiation from megavoltage beams?
    Biggs PJ; Styczynski JR
    Health Phys; 2008 Oct; 95(4):425-32. PubMed ID: 18784515
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit.
    Vuolo M; Baiocco G; Barbieri S; Bocchini L; Giraudo M; Gheysens T; Lobascio C; Ottolenghi A
    Life Sci Space Res (Amst); 2017 Nov; 15():69-78. PubMed ID: 29198316
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Lightweight Lead Aprons: The Emperor's New Clothes in the Angiography Suite?
    Lu H; Boyd C; Dawson J
    Eur J Vasc Endovasc Surg; 2019 May; 57(5):730-739. PubMed ID: 31005510
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography.
    Rottke D; Andersson J; Ejima KI; Sawada K; Schulze D
    Radiat Prot Dosimetry; 2017 Jun; 175(1):110-117. PubMed ID: 27664428
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The water equivalence of solid materials used for dosimetry with small proton beams.
    Schneider U; Pemler P; Besserer J; Dellert M; Moosburger M; de Boer J; Pedroni E; Boehringer T
    Med Phys; 2002 Dec; 29(12):2946-51. PubMed ID: 12512731
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Attenuation of primary and scatter radiation in concrete and steel for 18 MV X-rays from a Clinac-20 linear accelerator.
    Abrath FG; Bello J; Purdy JA
    Health Phys; 1983 Nov; 45(5):969-73. PubMed ID: 6417056
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Monte Carlo simulation of photon buildup factors for shielding materials in radiotherapy x-ray facilities.
    Karoui MK; Kharrati H
    Med Phys; 2013 Jul; 40(7):073901. PubMed ID: 23822458
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Broad beam transmission properties of some common shielding materials for use in diagnostic radiology.
    Rossi RP; Ritenour R; Christodoulou E
    Health Phys; 1991 Nov; 61(5):601-8. PubMed ID: 1752742
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT.
    Weber N; Monnin P; Elandoy C; Ding S
    Phys Med; 2015 Dec; 31(8):889-896. PubMed ID: 26112350
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Female gonadal shielding with automatic exposure control increases radiation risks.
    Kaplan SL; Magill D; Felice MA; Xiao R; Ali S; Zhu X
    Pediatr Radiol; 2018 Feb; 48(2):227-234. PubMed ID: 29046919
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A computerized implementation of a non-linear equation to predict barrier shielding requirements.
    Chamberlain AC; Strydom WJ
    Health Phys; 1997 Apr; 72(4):568-73. PubMed ID: 9119681
    [TBL] [Abstract][Full Text] [Related]  

  • 74. X-Ray protective clothing: does DIN 6857-1 allow an objective comparison between lead-free and lead-composite materials?
    Eder H; Schlattl H; Hoeschen C
    Rofo; 2010 May; 182(5):422-8. PubMed ID: 20143286
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The role of shielding in superficial X-ray therapy.
    Medvedevas N; Adliene D; Laurikaitiene J; Andrejaitis A
    Radiat Prot Dosimetry; 2011 Sep; 147(1-2):291-5. PubMed ID: 21816725
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Evaluation of therapeutic carbon-beam attenuation in inhomogeneous layered phantoms: Comparison with the present method using a water phantom.].
    Magara T; Kikumura R; Kameoka S; Ikeda T; Maruyama K
    Igaku Butsuri; 2006; 26(4):173-86. PubMed ID: 17634736
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Assessment of the integrity of structural shielding of four computed tomography facilities in the greater Accra region of Ghana.
    Nkansah A; Schandorf C; Boadu M; Fletcher JJ
    Radiat Prot Dosimetry; 2013 Aug; 155(4):423-31. PubMed ID: 23419904
    [TBL] [Abstract][Full Text] [Related]  

  • 78. ASSESSMENT OF INTEGRITY AND LEAD-EQUIVALENCE OF SHIELDED GARMENTS USING TWO-DIMENSIONAL X-RAY IMAGES FROM A COMPUTED TOMOGRAPHY SCANNER.
    Kairn T; Maxwell SK; Trapp JV; Crowe SB
    Radiat Prot Dosimetry; 2021 May; 193(3-4):155-164. PubMed ID: 33822208
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mathematical modeling of the radiation dose received from photons passing over and through shielding walls in a PET/CT suite.
    Fog LS; Cormack J
    Health Phys; 2010 Dec; 99(6):769-79. PubMed ID: 21068595
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.