These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15654245)

  • 1. Comparative study of the influence of anode and filter materials on primary shielding requirements for mammography.
    Okunade AA
    Health Phys; 2005 Feb; 88(2 Suppl):S44-52. PubMed ID: 15654245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of shielding requirements for mammography.
    Okunade AA; Ademoroti OA
    Med Phys; 2004 May; 31(5):1210-8. PubMed ID: 15191311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray spectroscopy applied to radiation shielding calculation in mammography.
    Künzel R; Levenhagen RS; Herdade SB; Terini RA; Costa PR
    Med Phys; 2008 Aug; 35(8):3539-45. PubMed ID: 18777914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation study of a quasi-monochromatic beam for x-ray computed mammotomography.
    McKinley RL; Tornai MP; Samei E; Bradshaw ML
    Med Phys; 2004 Apr; 31(4):800-13. PubMed ID: 15124997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambient dose equivalent and effective dose from scattered x-ray spectra in mammography for Mo/Mo, Mo/Rh and W/Rh anode/filter combinations.
    Künzel R; Herdade SB; Costa PR; Terini RA; Levenhagen RS
    Phys Med Biol; 2006 Apr; 51(8):2077-91. PubMed ID: 16585846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A bimetal anode with tungsten or rhodium? Comparative studies on image quality and dosage requirement in mammography].
    Funke M; Hermann KP; Breiter N; Moritz J; Müller D; Grabbe E
    Rofo; 1995 Nov; 163(5):388-94. PubMed ID: 8527751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-state dosimeters: a new approach for mammography measurements.
    Brateman LF; Heintz PH
    Med Phys; 2015 Feb; 42(2):542-57. PubMed ID: 25652475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of anode-filter combinations on image quality and radiation dose in 965 women undergoing mammography.
    Thilander-Klang AC; Ackerholm PH; Berlin IC; Bjurstam NG; Mattsson SL; Månsson LG; von Schéele C; Thunberg SJ
    Radiology; 1997 May; 203(2):348-54. PubMed ID: 9114087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intra-individual comparison of average glandular dose of two digital mammography units using different anode/filter combinations.
    Engelken FJ; Meyer H; Juran R; Bick U; Fallenberg E; Diekmann F
    Acad Radiol; 2009 Oct; 16(10):1272-80. PubMed ID: 19632866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The performance of commercial photodiodes for dosimetry in mammography.
    Batista E; Khoury HJ; Melo FA; Barros V; da Silva EF
    Radiat Prot Dosimetry; 2005; 115(1-4):391-3. PubMed ID: 16381752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grid removal and impact on population dose in full-field digital mammography.
    Gennaro G; Katz L; Souchay H; Klausz R; Alberelli C; di Maggio C
    Med Phys; 2007 Feb; 34(2):547-55. PubMed ID: 17388172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmission of broad W/Rh and W/Al (target/filter) x-ray beams operated at 25-49 kVp through common shielding materials.
    Li X; Zhang D; Liu B
    Med Phys; 2012 Jul; 39(7):4132-8. PubMed ID: 22830746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of a compression paddle on energy response, calibration and measurement with mammographic dosimeters using ionization chambers and solid-state detectors.
    Hourdakis CJ; Boziari A; Koumbouli E
    Phys Med Biol; 2009 Feb; 54(4):1047-59. PubMed ID: 19168939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A special ionisation chamber for quality control of diagnostic and mammography X ray equipment.
    Costa AM; Caldas LV
    Radiat Prot Dosimetry; 2003; 104(1):41-5. PubMed ID: 12862242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scatter radiation intensities around full-field digital mammography units.
    Judge MA; Keavey E; Phelan N
    Br J Radiol; 2013 Jan; 86(1021):20120130. PubMed ID: 23239693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast composition and radiographic breast equivalence.
    McLean D
    Australas Phys Eng Sci Med; 1997 Mar; 20(1):11-9. PubMed ID: 9141308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of anode/filter combinations in digital mammography with respect to the average glandular dose.
    Uhlenbrock DF; Mertelmeier T
    Rofo; 2009 Mar; 181(3):249-54. PubMed ID: 19241602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of anode/filter material and tube potential on contrast, signal-to-noise ratio and average absorbed dose in mammography: a Monte Carlo study.
    Dance DR; Thilander AK; Sandborg M; Skinner CL; Castellano IA; Carlsson GA
    Br J Radiol; 2000 Oct; 73(874):1056-67. PubMed ID: 11271898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Film-screen mammography x-ray tube anodes: molybdenum versus tungsten.
    Kimme-Smith C; Bassett LW; Gold RH; Rothschild P
    Med Phys; 1989; 16(2):279-83. PubMed ID: 2716707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of a flattening filter free linear accelerator on structural shielding design.
    Jank J; Kragl G; Georg D
    Z Med Phys; 2014 Mar; 24(1):38-48. PubMed ID: 23763984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.