These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15654345)

  • 1. Self-assembled microdevices driven by muscle.
    Xi J; Schmidt JJ; Montemagno CD
    Nat Mater; 2005 Feb; 4(2):180-4. PubMed ID: 15654345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-MEMS: building up micromuscles.
    Spatz JP
    Nat Mater; 2005 Feb; 4(2):115-6. PubMed ID: 15689947
    [No Abstract]   [Full Text] [Related]  

  • 3. Assembly of aligned linear metallic patterns on silicon.
    Chai J; Wang D; Fan X; Buriak JM
    Nat Nanotechnol; 2007 Aug; 2(8):500-6. PubMed ID: 18654348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembling silicon nanowires for device applications using the nanochannel-guided "grow-in-place" approach.
    Shan Y; Fonash SJ
    ACS Nano; 2008 Mar; 2(3):429-34. PubMed ID: 19206566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microchannel systems in titanium and silicon for structural and mechanical studies of aligned protein self-assemblies.
    Hirst LS; Parker ER; Abu-Samah Z; Li Y; Pynn R; MacDonald NC; Safinya CR
    Langmuir; 2005 Apr; 21(9):3910-4. PubMed ID: 15835954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guided and fluidic self-assembly of microstructures using railed microfluidic channels.
    Chung SE; Park W; Shin S; Lee SA; Kwon S
    Nat Mater; 2008 Jul; 7(7):581-7. PubMed ID: 18552850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch.
    Liu H; Schmidt JJ; Bachand GD; Rizk SS; Looger LL; Hellinga HW; Montemagno CD
    Nat Mater; 2002 Nov; 1(3):173-7. PubMed ID: 12618806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of functional myotubes with a Bio-MEMS device for non-invasive interrogation.
    Wilson K; Molnar P; Hickman J
    Lab Chip; 2007 Jul; 7(7):920-2. PubMed ID: 17594013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ organization of gold nanorods on mixed self-assembled-monolayer substrates.
    Zareie MH; Xu X; Cortie MB
    Small; 2007 Jan; 3(1):139-45. PubMed ID: 17294485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembling layers created by membrane proteins on gold.
    Shah DS; Thomas MB; Phillips S; Cisneros DA; Le Brun AP; Holt SA; Lakey JH
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):522-6. PubMed ID: 17511643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled multivalent carbohydrate ligands.
    Lim YB; Lee M
    Org Biomol Chem; 2007 Feb; 5(3):401-5. PubMed ID: 17252119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular shuttles powered by motor proteins: loading and unloading stations for nanocargo integrated into one device.
    Schmidt C; Vogel V
    Lab Chip; 2010 Sep; 10(17):2195-8. PubMed ID: 20661505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled molecular magnets on patterned silicon substrates: bridging bio-molecules with nanoelectronics.
    Chang CC; Sun KW; Lee SF; Kan LS
    Biomaterials; 2007 Apr; 28(11):1941-7. PubMed ID: 17223191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tunnel current in self-assembled monolayers of 3-mercaptopropyltrimethoxysilane.
    Aswal DK; Lenfant S; Guerin D; Yakhmi JV; Vuillaume D
    Small; 2005 Jul; 1(7):725-9. PubMed ID: 17193515
    [No Abstract]   [Full Text] [Related]  

  • 16. Assembly of metal nanoparticles into nanogaps.
    Barsotti RJ; Vahey MD; Wartena R; Chiang YM; Voldman J; Stellacci F
    Small; 2007 Mar; 3(3):488-99. PubMed ID: 17290481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved nanofabrication through guided transient liquefaction.
    Chou SY; Xia Q
    Nat Nanotechnol; 2008 May; 3(5):295-300. PubMed ID: 18654527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale adhesion, friction and wear studies of biomolecules on silicon based surfaces.
    Bhushan B; Tokachichu DR; Keener MT; Lee SC
    Acta Biomater; 2006 Jan; 2(1):39-49. PubMed ID: 16701857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly.
    Yu J; Shapter JG; Quinton JS; Johnston MR; Beattie DA
    Phys Chem Chem Phys; 2007 Jan; 9(4):510-20. PubMed ID: 17216067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A defined system to allow skeletal muscle differentiation and subsequent integration with silicon microstructures.
    Das M; Gregory CA; Molnar P; Riedel LM; Wilson K; Hickman JJ
    Biomaterials; 2006 Aug; 27(24):4374-80. PubMed ID: 16647113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.