These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 15654763)
1. Molecular recognition in a trans excision-splicing ribozyme: non-Watson-Crick base pairs at the 5' splice site and omegaG at the 3' splice site can play a role in determining the binding register of reaction substrates. Baum DA; Sinha J; Testa SM Biochemistry; 2005 Jan; 44(3):1067-77. PubMed ID: 15654763 [TBL] [Abstract][Full Text] [Related]
2. Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs. Johnson AK; Sinha J; Testa SM Biochemistry; 2005 Aug; 44(31):10702-10. PubMed ID: 16060679 [TBL] [Abstract][Full Text] [Related]
3. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans. Sargueil B; Tanner NK J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170 [TBL] [Abstract][Full Text] [Related]
4. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization. Strobel SA; Cech TR Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575 [TBL] [Abstract][Full Text] [Related]
5. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing. Karbstein K; Lee J; Herschlag D Biochemistry; 2007 Apr; 46(16):4861-75. PubMed ID: 17385892 [TBL] [Abstract][Full Text] [Related]
6. Kinetic characterization of the first step of the ribozyme-catalyzed trans excision-splicing reaction. Dotson PP; Sinha J; Testa SM FEBS J; 2008 Jun; 275(12):3110-22. PubMed ID: 18479464 [TBL] [Abstract][Full Text] [Related]
7. Coordination of two sequential ester-transfer reactions: exogenous guanosine binding promotes the subsequent omegaG binding to a group I intron. Bao P; Wu QJ; Yin P; Jiang Y; Wang X; Xie MH; Sun T; Huang L; Mo DD; Zhang Y Nucleic Acids Res; 2008 Dec; 36(21):6934-43. PubMed ID: 18978026 [TBL] [Abstract][Full Text] [Related]
8. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction. Oe Y; Ikawa Y; Shiraishi H; Inoue T Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885 [TBL] [Abstract][Full Text] [Related]
9. Requirements of a group I intron for reactions at the 3' splice site. van der Horst G; Inoue T J Mol Biol; 1993 Feb; 229(3):685-94. PubMed ID: 8433366 [TBL] [Abstract][Full Text] [Related]
10. A Pneumocystis carinii group I intron-derived ribozyme utilizes an endogenous guanosine as the first reaction step nucleophile in the trans excision-splicing reaction. Dotson PP; Sinha J; Testa SM Biochemistry; 2008 Apr; 47(16):4780-7. PubMed ID: 18363339 [TBL] [Abstract][Full Text] [Related]
11. Guiding ribozyme cleavage through motif recognition: the mechanism of cleavage site selection by a group ii intron ribozyme. Su LJ; Qin PZ; Michels WJ; Pyle AM J Mol Biol; 2001 Mar; 306(4):655-68. PubMed ID: 11243778 [TBL] [Abstract][Full Text] [Related]
12. Antagonistic substrate binding by a group II intron ribozyme. Qin PZ; Pyle AM J Mol Biol; 1999 Aug; 291(1):15-27. PubMed ID: 10438603 [TBL] [Abstract][Full Text] [Related]
13. The tolerance to exchanges of the Watson Crick base pair in the hammerhead ribozyme core is determined by surrounding elements. Przybilski R; Hammann C RNA; 2007 Oct; 13(10):1625-30. PubMed ID: 17666711 [TBL] [Abstract][Full Text] [Related]
14. Ribozyme mediated trans insertion-splicing of modified oligonucleotides into RNA. Dotson PP; Frommeyer KN; Testa SM Arch Biochem Biophys; 2008 Oct; 478(1):81-4. PubMed ID: 18671935 [TBL] [Abstract][Full Text] [Related]
15. Optimizing the substrate specificity of a group I intron ribozyme. Zarrinkar PP; Sullenger BA Biochemistry; 1999 Mar; 38(11):3426-32. PubMed ID: 10079089 [TBL] [Abstract][Full Text] [Related]
16. A Pneumocystis carinii group I intron ribozyme that does not require 2' OH groups on its 5' exon mimic for binding to the catalytic core. Testa SM; Haidaris CG; Gigliotti F; Turner DH Biochemistry; 1997 Dec; 36(49):15303-14. PubMed ID: 9398259 [TBL] [Abstract][Full Text] [Related]
17. RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis. Stahley MR; Strobel SA Curr Opin Struct Biol; 2006 Jun; 16(3):319-26. PubMed ID: 16697179 [TBL] [Abstract][Full Text] [Related]
18. Conformational switches involved in orchestrating the successive steps of group I RNA splicing. Golden BL; Cech TR Biochemistry; 1996 Mar; 35(12):3754-63. PubMed ID: 8619996 [TBL] [Abstract][Full Text] [Related]
19. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Guo F; Gooding AR; Cech TR Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509 [TBL] [Abstract][Full Text] [Related]
20. Enhancing the second step of the trans excision-splicing reaction of a group I ribozyme by exploiting P9.0 and P10 for intermolecular recognition. Bell MA; Sinha J; Johnson AK; Testa SM Biochemistry; 2004 Apr; 43(14):4323-31. PubMed ID: 15065876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]