BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 15654851)

  • 1. Depolarization evokes different patterns of calcium signals and exocytosis in bovine and mouse chromaffin cells: the role of mitochondria.
    Alés E; Fuentealba J; García AG; López MG
    Eur J Neurosci; 2005 Jan; 21(1):142-50. PubMed ID: 15654851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen sulphide facilitates exocytosis by regulating the handling of intracellular calcium by chromaffin cells.
    de Pascual R; Baraibar AM; Méndez-López I; Pérez-Ciria M; Polo-Vaquero I; Gandía L; Ohia SE; García AG; de Diego AMG
    Pflugers Arch; 2018 Aug; 470(8):1255-1270. PubMed ID: 29721607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-dependent inhibition of L, N, and P/Q Ca2+ channels in chromaffin cells: role of mitochondria.
    Hernandez-Guijo JM; Maneu-Flores VE; Ruiz-Nuno A; Villarroya M; Garcia AG; Gandia L
    J Neurosci; 2001 Apr; 21(8):2553-60. PubMed ID: 11306608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative contribution of the Na(+)/Ca(2+) exchanger, mitochondria and endoplasmic reticulum in the regulation of cytosolic Ca(2+) and catecholamine secretion of bovine adrenal chromaffin cells.
    Yang DM; Kao LS
    J Neurochem; 2001 Jan; 76(1):210-6. PubMed ID: 11145994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholine and potassium elicit different patterns of exocytosis in chromaffin cells when the intracellular calcium handling is disturbed.
    Cuchillo-Ibáñez I; Olivares R; Aldea M; Villarroya M; Arroyo G; Fuentealba J; García AG; Albillos A
    Pflugers Arch; 2002 May; 444(1-2):133-42. PubMed ID: 11976925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmalemmal sodium-calcium exchanger shapes the calcium and exocytotic signals of chromaffin cells at physiological temperature.
    Padín JF; Fernández-Morales JC; Olivares R; Vestring S; Arranz-Tagarro JA; Calvo-Gallardo E; de Pascual R; Gandía L; García AG
    Am J Physiol Cell Physiol; 2013 Jul; 305(2):C160-72. PubMed ID: 23596174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial calcium sequestration and protein kinase C cooperate in the regulation of cortical F-actin disassembly and secretion in bovine chromaffin cells.
    Cuchillo-Ibáñez I; Lejen T; Albillos A; Rosé SD; Olivares R; Villarroya M; García AG; Trifaró JM
    J Physiol; 2004 Oct; 560(Pt 1):63-76. PubMed ID: 15133064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria regulate the Ca(2+)-exocytosis relationship of bovine adrenal chromaffin cells.
    Giovannucci DR; Hlubek MD; Stuenkel EL
    J Neurosci; 1999 Nov; 19(21):9261-70. PubMed ID: 10531430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CCCP enhances catecholamine release from the perfused rat adrenal medulla.
    Lim DY; Park HG; Miwa S
    Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium signaling and exocytosis in adrenal chromaffin cells.
    García AG; García-De-Diego AM; Gandía L; Borges R; García-Sancho J
    Physiol Rev; 2006 Oct; 86(4):1093-131. PubMed ID: 17015485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectivity of action of pregabalin on Ca(2+) channels but not on fusion pore, exocytotic machinery, or mitochondria in chromaffin cells of the adrenal gland.
    Hernández-Vivanco A; Pérez-Alvarez A; Caba-González JC; Alonso MT; Moreno-Ortega AJ; Cano-Abad M; Ruiz-Nuño A; Carmona-Hidalgo B; Albillos A
    J Pharmacol Exp Ther; 2012 Aug; 342(2):263-72. PubMed ID: 22537772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells.
    Polo-Parada L; Chan SA; Smith C
    Neuroscience; 2006 Dec; 143(2):445-59. PubMed ID: 16962713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low nicotine concentration augments vesicle motion and exocytosis triggered by K(+) depolarisation of chromaffin cells.
    de Diego AM; Tapia L; Alvarez RM; Mosquera M; Cortés L; López I; Gutiérrez LM; Gandía L; García AG
    Eur J Pharmacol; 2008 Nov; 598(1-3):81-6. PubMed ID: 18831972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries.
    Cheranov SY; Jaggar JH
    J Physiol; 2004 May; 556(Pt 3):755-71. PubMed ID: 14766935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The quantal catecholamine release from mouse chromaffin cells challenged with repeated ACh pulses is regulated by the mitochondrial Na
    López-Gil A; Nanclares C; Méndez-López I; Martínez-Ramírez C; de Los Rios C; Padín-Nogueira JF; Montero M; Gandía L; García AG
    J Physiol; 2017 Mar; 595(6):2129-2146. PubMed ID: 27982456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The modulation of action potential generation by calcium-induced calcium release is enhanced by mitochondrial inhibitors in mudpuppy parasympathetic neurons.
    Barstow KL; Locknar SA; Merriam LA; Parsons RL
    Neuroscience; 2004; 124(2):327-39. PubMed ID: 14980383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tight mitochondrial control of calcium and exocytotic signals in chromaffin cells at embryonic life.
    Vestring S; Fernández-Morales JC; Méndez-López I; C Musial D; G de Diego AM; Padín JF; G García A
    Pflugers Arch; 2015 Dec; 467(12):2589-601. PubMed ID: 26254593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-target novel neuroprotective compound ITH33/IQM9.21 inhibits calcium entry, calcium signals and exocytosis.
    Maroto M; de Diego AM; Albiñana E; Fernandez-Morales JC; Caricati-Neto A; Jurkiewicz A; Yáñez M; Rodriguez-Franco MI; Conde S; Arce MP; Hernández-Guijo JM; García AG
    Cell Calcium; 2011 Oct; 50(4):359-69. PubMed ID: 21839513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells.
    Pérez-Alvarez A; Albillos A
    J Neurochem; 2007 Dec; 103(6):2281-90. PubMed ID: 17883397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca
    Moya-Díaz J; Bayonés L; Montenegro M; Cárdenas AM; Koch H; Doi A; Marengo FD
    Acta Physiol (Oxf); 2020 Apr; 228(4):e13417. PubMed ID: 31769918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.