These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15654866)

  • 21. Gating of acid-sensitive ion channel-1: release of Ca2+ block vs. allosteric mechanism.
    Zhang P; Sigworth FJ; Canessa CM
    J Gen Physiol; 2006 Feb; 127(2):109-17. PubMed ID: 16418400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How to dismantle a detonator synapse.
    Pelkey KA; McBain CJ
    Neuron; 2005 Feb; 45(3):327-9. PubMed ID: 15694316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium channel regulation and presynaptic plasticity.
    Catterall WA; Few AP
    Neuron; 2008 Sep; 59(6):882-901. PubMed ID: 18817729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synapse-to-synapse variation of calcium channel subtype contributions in large mossy fiber terminals of mouse hippocampus.
    Miyazaki K; Ishizuka T; Yawo H
    Neuroscience; 2005; 136(4):1003-14. PubMed ID: 16226383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single calcium channels and acetylcholine release at a presynaptic nerve terminal.
    Stanley EF
    Neuron; 1993 Dec; 11(6):1007-11. PubMed ID: 8274272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium influx through N-methyl-D-aspartate receptors triggers GABA release at interneuron-Purkinje cell synapse in rat cerebellum.
    Glitsch MD
    Neuroscience; 2008 Jan; 151(2):403-9. PubMed ID: 18055124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 5-HT1B receptor-mediated presynaptic inhibition at the calyx of Held of immature rats.
    Mizutani H; Hori T; Takahashi T
    Eur J Neurosci; 2006 Oct; 24(7):1946-54. PubMed ID: 17067296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse.
    Sabatini BL; Regehr WG
    J Neurosci; 1997 May; 17(10):3425-35. PubMed ID: 9133368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long splice variant N type calcium channels are clustered at presynaptic transmitter release sites without modular adaptor proteins.
    Khanna R; Sun L; Li Q; Guo L; Stanley EF
    Neuroscience; 2006; 138(4):1115-25. PubMed ID: 16473471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single calcium channels on a cholinergic presynaptic nerve terminal.
    Stanley EF
    Neuron; 1991 Oct; 7(4):585-91. PubMed ID: 1657055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release.
    Shahrezaei V; Delaney KR
    J Neurophysiol; 2005 Sep; 94(3):1912-9. PubMed ID: 15888526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The transmitter release-site CaV2.2 channel cluster is linked to an endocytosis coat protein complex.
    Khanna R; Li Q; Schlichter LC; Stanley EF
    Eur J Neurosci; 2007 Aug; 26(3):560-74. PubMed ID: 17686037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Presynaptic disruption of transmitter release by lead.
    Suszkiw JB
    Neurotoxicology; 2004 Jun; 25(4):599-604. PubMed ID: 15183013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Presynaptic GABA(B) receptors regulate retinohypothalamic tract synaptic transmission by inhibiting voltage-gated Ca2+ channels.
    Moldavan MG; Irwin RP; Allen CN
    J Neurophysiol; 2006 Jun; 95(6):3727-41. PubMed ID: 16709723
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy.
    Burnashev N; Rozov A
    Cell Calcium; 2005 May; 37(5):489-95. PubMed ID: 15820398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-vesicle hypothesis for neurotransmitter release: a possible molecular mechanism.
    Yusim K; Parnas H; Segel LA
    Bull Math Biol; 2001 Nov; 63(6):1025-40. PubMed ID: 11732174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of extracellular pH on neuronal calcium channel activation.
    Doering CJ; McRory JE
    Neuroscience; 2007 May; 146(3):1032-43. PubMed ID: 17434266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dynamics of luminal depletion and the stochastic gating of Ca2+-activated Ca2+ channels and release sites.
    Huertas MA; Smith GD
    J Theor Biol; 2007 May; 246(2):332-54. PubMed ID: 17286986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Presynaptic muscarinic receptors, calcium channels, and protein kinase C modulate the functional disconnection of weak inputs at polyinnervated neonatal neuromuscular synapses.
    Santafe MM; Garcia N; Lanuza MA; Tomàs M; Besalduch N; Tomàs J
    J Neurosci Res; 2009 Apr; 87(5):1195-206. PubMed ID: 19006081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of residual Ca2+ on the stochastic gating of Ca2+-regulated Ca2+ channel models.
    Mazzag B; Tignanelli CJ; Smith GD
    J Theor Biol; 2005 Jul; 235(1):121-50. PubMed ID: 15833318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.